A tale of Algebra and Geometry

Dan Abramovich

Brown University

University of Pisa June 4, 2018

Abramovich (Brown)

3 June 4, 2018 1 / 12

-

< 🗇 🕨 < 🖃 🕨

Intersection theory on algebraic stacks and their moduli spaces [Inv. 1989]

(6.4) Corollary.

A scheme with quotient singularities admits a natural intersection theory with rational coefficients.^a

Intersection theory on algebraic stacks and their moduli spaces [Inv. 1989]

(6.4) Corollary.

A scheme with quotient singularities admits a natural intersection theory with rational coefficients.^a

^a is a weak Alexander scheme.

• This is wonderful: it tells you something about varieties, which you can use even if you know nothing about the tools, namely stacks.

Intersection theory on algebraic stacks and their moduli spaces [Inv. 1989]

(6.4) Corollary.

A scheme with quotient singularities admits a natural intersection theory with rational coefficients.^a

^a is a weak Alexander scheme.

- This is wonderful: it tells you something about varieties, which you can use even if you know nothing about the tools, namely stacks.
- Angelo's thesis leads to many explicit computations, numerous theses, and further work at the foundation of enumerative geometry (180 citations).

Theorem [Invent. Math. 1998]

Assume that κ has characteristic $\neq 2$ and 3. Then $A^*(\mathcal{M}_2) = \mathbb{Z}[\lambda_1, \lambda_2]/(10\lambda_1, 2\lambda_1^2 - 24\lambda_2)$

• The setting is Harvard, possibly around 1990, a course on moduli of curves, by the great conjurer of families of curves. There is a discussion of moduli functors, properties, tangent spaces, etc.

- The setting is Harvard, possibly around 1990, a course on moduli of curves, by the great conjurer of families of curves. There is a discussion of moduli functors, properties, tangent spaces, etc.
- Finally Angelo can't restrain himself, and asks

- The setting is Harvard, possibly around 1990, a course on moduli of curves, by the great conjurer of families of curves. There is a discussion of moduli functors, properties, tangent spaces, etc.
- Finally Angelo can't restrain himself, and asks

"But you can't really ignore the automorphisms, can you?".

- The setting is Harvard, possibly around 1990, a course on moduli of curves, by the great conjurer of families of curves. There is a discussion of moduli functors, properties, tangent spaces, etc.
- Finally Angelo can't restrain himself, and asks

"But you can't really ignore the automorphisms, can you?".

• The next class was given by Angelo, a career-changing event, the first proper introduction to algebraic stacks for many.

- The setting is Harvard, possibly around 1990, a course on moduli of curves, by the great conjurer of families of curves. There is a discussion of moduli functors, properties, tangent spaces, etc.
- Finally Angelo can't restrain himself, and asks

"But you can't really ignore the automorphisms, can you?".

- The next class was given by Angelo, a career-changing event, the first proper introduction to algebraic stacks for many.
- He is basically telling students and professor alike how to seriously think about families and moduli.

- 一司

Abramovich (Brown)

A tale of Algebra and Geometry

June 4, 2018 4 / 12

Abramovich (Brown)

A tale of Algebra and Geometry

- 一司

Proposition 5.3.1 [JAMS 2002]

Proposition 5.3.1 [JAMS 2002]

The category $\mathcal{K}_{g,n}(\mathcal{M}, d)$ has a deformation and obstruction theory satisfying Artin's criteria.

• Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!

Proposition 5.3.1 [JAMS 2002]

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.

Proposition 5.3.1 [JAMS 2002]

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
- Now that I said this, you see how scary it can be?

Proposition 5.3.1 [JAMS 2002]

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
- Now that I said this, you see how scary it can be? Add to that sheaf theory, and Riemann-Roch, and Serre duality on stacks...

Proposition 5.3.1 [JAMS 2002]

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
- Now that I said this, you see how scary it can be? Add to that sheaf theory, and Riemann-Roch, and Serre duality on stacks...
- It really does help that someone with a reassuring voice tells you:

Proposition 5.3.1 [JAMS 2002]

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
- Now that I said this, you see how scary it can be? Add to that sheaf theory, and Riemann-Roch, and Serre duality on stacks...
- It really does help that someone with a reassuring voice tells you: "This is kind of obvious (if you think about it)".

Proposition 5.3.1 [JAMS 2002]

The category $\mathcal{K}_{g,n}(\mathcal{M}, d)$ has a deformation and obstruction theory satisfying Artin's criteria.

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
- Now that I said this, you see how scary it can be? Add to that sheaf theory, and Riemann-Roch, and Serre duality on stacks...
- It really does help that someone with a reassuring voice tells you: "This is kind of obvious (if you think about it)".
- While this sentence "This is kind of obvious (if you think about it)" might be perceived as intimidating, it is meant to be comforting.

(人間) トイヨト イヨト

Proposition 5.3.1 [JAMS 2002]

The category $\mathcal{K}_{g,n}(\mathcal{M}, d)$ has a deformation and obstruction theory satisfying Artin's criteria.

- Imagine yourself, working with Angelo, faced with the fact that not only you need to work with stacks, you also need to deform them!
- Sure, Illusie worked things out in the generality of ringed toposes.
- Now that I said this, you see how scary it can be? Add to that sheaf theory, and Riemann-Roch, and Serre duality on stacks...
- It really does help that someone with a reassuring voice tells you: "This is kind of obvious (if you think about it)".
- While this sentence "This is kind of obvious (if you think about it)" might be perceived as intimidating, it is meant to be comforting.

However ...

Abramovich (Brown)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

 It is after class at Harvard, I think in the common room, and a professor corners a student about some math problems in algebraic geometry.

- It is after class at Harvard, I think in the common room, and a professor corners a student about some math problems in algebraic geometry.
- The student is scared and would have weaseled out.

- It is after class at Harvard, I think in the common room, and a professor corners a student about some math problems in algebraic geometry.
- The student is scared and would have weaseled out.
- But the professor has two bodyguards on both sides, nodding, smiling.

- It is after class at Harvard, I think in the common room, and a professor corners a student about some math problems in algebraic geometry.
- The student is scared and would have weaseled out.
- But the professor has two bodyguards on both sides, nodding, smiling.
- Angelo has this towering figure, and there is no way the student would escape!

• We were sitting in Angelo's office at Harvard, 1996-1997.

- We were sitting in Angelo's office at Harvard, 1996-1997.
- Angelo asks: how can we compactify the moduli space of elliptic surfaces?

- We were sitting in Angelo's office at Harvard, 1996-1997.
- Angelo asks: how can we compactify the moduli space of elliptic surfaces?
- We think of several options. I recall we discussed line bundles with sections following Lucia's thesis, Alexeev spaces, and Kontsevich spaces of stable maps, the option we pursue.

- We were sitting in Angelo's office at Harvard, 1996-1997.
- Angelo asks: how can we compactify the moduli space of elliptic surfaces?
- We think of several options. I recall we discussed line bundles with sections following Lucia's thesis, Alexeev spaces, and Kontsevich spaces of stable maps, the option we pursue.
- (Turns out these three are related, though possibly more can be said about the first!)

- We were sitting in Angelo's office at Harvard, 1996-1997.
- Angelo asks: how can we compactify the moduli space of elliptic surfaces?
- We think of several options. I recall we discussed line bundles with sections following Lucia's thesis, Alexeev spaces, and Kontsevich spaces of stable maps, the option we pursue.
- (Turns out these three are related, though possibly more can be said about the first!)
- But there is an issue: how do you fill up a degenerate elliptic surface across a point?

- We were sitting in Angelo's office at Harvard, 1996-1997.
- Angelo asks: how can we compactify the moduli space of elliptic surfaces?
- We think of several options. I recall we discussed line bundles with sections following Lucia's thesis, Alexeev spaces, and Kontsevich spaces of stable maps, the option we pursue.
- (Turns out these three are related, though possibly more can be said about the first!)
- But there is an issue: how do you fill up a degenerate elliptic surface across a point?
- The next morning Angelo reveals a beautiful Lemma.

The Purity Lemma [JAMS 2002]

Let $\mathcal{M} \to \mathbf{M}$ be the coarse moduli space of a separated Deligne -Mumford stack, X a separated S_2 surface, P a closed point. Assume that the local fundamental group of $U = X \setminus P$ around P is trivial.

The Purity Lemma [JAMS 2002]

Let $\mathcal{M} \to \mathbf{M}$ be the coarse moduli space of a separated Deligne -Mumford stack, X a separated S_2 surface, P a closed point. Assume that the local fundamental group of $U = X \setminus P$ around P is trivial.

Let $f: X \to \mathbf{M}$ be a morphism. Suppose there is a lifting $\tilde{f}_U: U \to \mathcal{M}$:

Then the lifting extends to X:

• • • • • • • • • • • •

The purity lemma: localization and lifting on U

- The problem is étale local, so we may pass to strict henselization.
- We can thus assume U simply connected,
- and $\mathcal{M} = [V/\Gamma]$, with $V \to \mathcal{M}$ finite étale.
- Consider $V_U = U \times_{\mathcal{M}} V$.

Since V_U → U is finite étale and U simply connected there is a section U → V_U composing to a morphism U → V.

The purity lemma: end of proof

• Consider the closure Y of U in $X \times_{\mathbf{M}} V$:

- As $V \to \mathbf{M}$ is finite, $Y \to X$ is finite.
- As $U \to X$ is birational and isomorphism away from codimension 2, $Y \to X$ is also.
- As X is S_2 , we have $Y \to X$ an isomorphism.
- $X \to Y \to \cdots \to \mathcal{M}$ is the needed lifting.

Theorem [Invent. Math. 1998]

Assume that κ has characteristic $\neq 2$ and 3. Then $\mathcal{M}_2 = [X/GL_2]$, where X is the space of smooth degree 6 binary forms (and the action is twisted!).

Theorem [Invent. Math. 1998]

Assume that κ has characteristic $\neq 2$ and 3. Then $\mathcal{M}_2 = [X/GL_2]$, where X is the space of smooth degree 6 binary forms (and the action is twisted!).

Theorem [JPAA 1999]

An étale polynomial map $F : \mathbb{A}^3 \to \mathbb{A}^3$ of degree 3 is an isomorphism.

Theorem [Invent. Math. 1998]

Assume that κ has characteristic $\neq 2$ and 3. Then $\mathcal{M}_2 = [X/GL_2]$, where X is the space of smooth degree 6 binary forms (and the action is twisted!).

Theorem [JPAA 1999]

An étale polynomial map $F : \mathbb{A}^3 \to \mathbb{A}^3$ of degree 3 is an isomorphism.

Theorem 1 [Kresch-Vistoli, BLMS 2004]

Let X be a Deligne–Mumford quotient stack over a field having a qusiprojective coarse moduli space. Then X has a finite flat lci cover $Z \rightarrow X$ by a quasiprojective scheme which is as smooth as X.

イロト 不得 トイヨト イヨト 二日

Theorem [Invent. Math. 1998]

Assume that κ has characteristic $\neq 2$ and 3. Then $\mathcal{M}_2 = [X/GL_2]$, where X is the space of smooth degree 6 binary forms (and the action is twisted!).

Theorem [JPAA 1999]

An étale polynomial map $F : \mathbb{A}^3 \to \mathbb{A}^3$ of degree 3 is an isomorphism.

Theorem 1 [Kresch-Vistoli, BLMS 2004]

Let X be a Deligne–Mumford quotient stack over a field having a qusiprojective coarse moduli space. Then X has a finite flat lci cover $Z \rightarrow X$ by a quasiprojective scheme which is as smooth as X.

Theorem 1.2 [Brosnan-Reichstein-Vistoli 2009]

```
The essential dimension of \mathcal{M}_2 is 5.
```

Abramovich (Brown)

This is an interim report.

More to come!

-