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ETH Zürich, July 15, 2020

Abramovich Resolution and logarithmic resolution ETH Zürich, July 15, 2020 1 / 25



How to resolve

To resolve a singular variety X one wants to

(1) find the worst singular locus S ⊂ X ,

(2) Hopefully S is smooth - blow it up.

Fact

This works for curves but not in general.
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Example: Whitney’s umbrella

Consider X = V (x2 − y2z)

(1) The worst singularity is the origin.

(2) In the z chart we get
x = x ′z , y = y ′z , giving

x ′2z2 − y ′2z3 = 0, or z2(x ′2 − y ′2z) = 0.

The first term is exceptional, the second is the same as X .
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Two theorems

Nevertheless:

Theorem (ℵ-T-W, McQuillan, characteristic 0)

There is a functor F associating to a singular subvariety X ⊂ Y embedded in a
smooth variety Y , a center J̄ with stack theoretic weighted blowing up Y ′ → Y
and proper transform (X ′ ⊂ Y ′) = F (X ⊂ Y ) such that
maxinv(X ′) < maxinv(X ). In particular, for some n the iterate
(Xn ⊂ Yn) := F ◦n(X ⊂ Y ) of F has Xn smooth.

Theorem (Quek, characteristic 0)

There is a functor F associating to a logarithmically singular subvariety X ⊂ Y
embedded in a logarithmically smooth variety Y , a logarithmic center J̄ with
stack theoretic logarithmic blowing up Y ′ → Y and proper transform
(X ′ ⊂ Y ′) = F (X ⊂ Y ) such that maxloginv(X ′) < maxloginv(X ). In particular,
for some n the iterate (Xn ⊂ Yn) := F ◦n(X ⊂ Y ) of F has Xn logarithmically
smooth.
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Context: families

Hironaka’s theorem resolves varieties. What can you do with families of
varieties X → B?

Theorem (ℵ-Karu, 2000)

There is a modification X ′ → B ′ which is logarithmically smooth.

Logarithmically smooth = toroidal:

A toric morphism X → B of toric varieties is a torus equivariant
morphism.

A toroidal embedding UX ⊂ X is an open embedding étale locally
isomorphic to toric T ⊂ V .

A toroidal morphism X → B of toroidal embeddings is étale locally
isomorphic to a toric morphism.
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Examples of toroidal morphisms

A toric morphism X → B of toric varieties is a torus equivariant
morphism.e.g.

SpecC[x , y , z ]/(xy − z2)→ SpecC,

SpecC[x ]→ SpecC[x2],

toric blowups
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Context: functoriality

Hironaka’s theorem is functorial.

[ℵ-Karu 2000] is not: relied on deJong’s method.

For K–S-B or K-moduli want functoriality.

Theorem (ℵ-T-W 2020)

Given X → B there is a relatively functorial logarithmically smooth
modification X ′ → B ′.

This respects AutB X .

Does not modify log smooth fibers.
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Context: principalization

Following Hironaka, the above theorem is based on embedded
methods:

Theorem (ℵ-T-W 2020)

Given Y → B logarithmically smooth and I ⊂ OY , there is a relatively
functorial logarithmically smooth modification Y ′ → B ′ such that IOY ′ is
monomial.

This is done by a sequence of logarithmic modifications,

where in each step E becomes part of the divisor DY ′ .
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Example 1

Y = Spec k[x , u]; DY = V (u); B = Spec k ; I = (x2, u2).

Blow up J = (x , u)

IOY ′ = O(−2E )
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Example 1/2

Y = Spec k[x , u]; DY = V (u); I = (x2, u2)

Y0 = Spec k[x , v ]; DY0 = V (v); I0 = (x2, v),

f : Y → Y0 v = u2 so I = f ∗I0

By functoriality blow up J0 so that f ∗J0 = J = (x , u).

Blow up J0 = (x ,
√
v)

Whatever J0 is, the blowup is a stack.
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Example 1/2: charts

x chart: v = v ′x2:

(x2, v) = (x2, v ′x2) = (x2)

exceptional, so monomial.
√
v chart: v = w2, x = x ′w , with ±1 action (x ′,w) 7→ (−x ′,−w):

(x2, v) = (x ′
2
w2,w2) = (w2)

exceptional, so monomial.

The schematic quotient of the above is not toroidal.
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Resolution again

Theorem (ℵ-T-W, McQuillan, characteristic 0)

There is a functor F associating to a singular subvariety X ⊂ Y embedded in a
smooth variety Y , a center J̄ with stack theoretic weighted blowing up Y ′ → Y
and proper transform (X ′ ⊂ Y ′) = F (X ⊂ Y ) such that
maxinv(X ′) < maxinv(X ). In particular, for some n the iterate
(Xn ⊂ Yn) := F ◦n(X ⊂ Y ) of F has Xn smooth.

Example

For X = V (x2 − y2z) we have invp(X ) = (2, 3, 3)
We read it from the degrees of terms.
The center is:
J = (x2, y3, z3); J̄ = (x1/3, y1/2, z1/2).
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Example: blowing up Whitney’s umbrella x2 = y 2z

The blowing up Y ′ → Y makes J̄ = (x1/3, y1/2, z1/2) principal. Explicitly:

The z chart has x = w3x3, y = w2y3, z = w2 with chart

Y ′ = [ SpecC[x3, y3,w ] / (±1) ],

with action of (±1) given by (x3, y3,w) 7→ (−x3, y3,−w).
The transformed equation is

w6(x2
3 − y2

3 ),

and the invariant of the proper transform (x2
3 − y2

3 ) is
(2, 2) < (2, 3, 3).
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Order

We fix Y smooth and I ⊂ OY .

Definition

For p ∈ Y let ordp(I) = max{a : I ⊆ ma
p}.

We denote by Da the sheaf of a-th order operators.

We note that ordp(I) = min{a : DaIp} = (1).

The invariant starts with a1 = ordp(I).

Proposition

The order is upper semicontinuous.

Proof.

V (Da−1I) = {p : ordp(I) ≥ a}. ♠

Abramovich Resolution and logarithmic resolution ETH Zürich, July 15, 2020 14 / 25



Maximal contact

Definition

A regular parameter x1 ∈ Da1−1Ip is called a maximal contact element.

The center starts with (xa1
1 , . . .).

Lemma

In characteristic 0 a maximal contact exists on an open neighborhood of p.

Since 1 ∈ Da1Ip there is x1 with derivative 1. This derivative is a unit in a
neighborhood.

Example

For I = (x2 − y2z) we have ordpI = 2 with x1 = x (or
x + y2 + yz + h.o.t.).
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Coefficient ideals

We must restrict to x1 = 0 the data of all

I, DI, . . . , Da1−1I

with corresponding weights a1, a1 − 1, . . . , 1.
We combine these in

C (I, a1) :=
∑

f
(
I,DI, . . . ,Da1−1I

)
,

where f runs over monomials f = tb0
0 · · · t

ba1−1

a1−1 with weights∑
bi (a1 − i) ≥ a1!.

Define I[2] = C (I, a1)|x1=0.
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Defining JI
Again a1 = ordpI and x1 maximal contact.
We denoted I[2] = C (I, a1)|x1=0.

Definition

Suppose I[2] has invariant invp(I[2]) defined with parameters x̄2, . . . , x̄k ,
with lifts x2, . . . , xk . Set

invp(I) = (a1, . . . , ak) :=

(
a1,

invp(I[2])

(a1 − 1)!

)
and

JI = (xa1
1 , . . . , x

ak
k ).

Write (a1, . . . , ak) = `(1/w1, . . . , 1/wk) with wi , ` ∈ N and
gcd(w1, . . . ,wk) = 1. We set

J̄I = (x
1/w1

1 , . . . , x
1/wk

k ).

Abramovich Resolution and logarithmic resolution ETH Zürich, July 15, 2020 17 / 25



Examples of JI

invp(I) = (a1, . . . , ak) :=
(
a1,

invp(I[2])
(a1−1)!

)
, with JI = (xa1

1 , . . . , x
ak
k ).

Example

(0) for X = V (x2 + y2z) we have I[2] = (y2z), leading to
JI = (x2, y3, z3), J̄I = (x1/3, y1/2, z1/2)

(1) for X = V (x5 + x3y3 + y8) we have I[2] = (y)180, so
JI = (x5, y180/24) = (x5, y15/2), J̄I = (x1/3, y1/2).

(2) for X = V (x5 + x3y3 + y7) we have I[2] = (y)7·24, so
JI = (x5, y7), J̄I = (x1/7, y1/5).
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Properties of the invariant

Proposition

invp is well-defined.

invp is lexicographically upper-semi-continuous.

invp is functorial.

invp takes values in a well-ordered set.

We define maxinv(X ) = maxp invp(X ).
The invariant is well defined because of the MC-invariance property of
C (I, a1). The rest is induction!

Theorem (MC-invariance [W lodarczyk, Kollár])

Given maximal contacts x1, x
′
1 there are étale π, π′ : Ỹ ⇒ Y such that

π∗x1 = π′∗x ′1 . . . and π∗C (I, a1) = π′∗C (I, a1).
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Definition of Y ′ → Y

Let J̄ = (x
1/w1

1 , . . . , x
1/wk

k ). Define the graded algebra

AJ̄ ⊂ OY [T ]

as the integral closure of the image of

OY [Y1, . . . ,Yn] // OY [T ]

Yi
� // xiT

wi .

Let
S0 ⊂ SpecY AJ̄ , S0 = V ((AJ̄)>0).

Then
BlJ̄(Y ) := ProjYAJ̄ :=

[
(SpecAJ̄ r S0)

/
Gm

]
.
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Description of Y ′ → Y

Charts: The x1-chart is

[Spec k[u, x ′2, . . . , x
′
n] / µw1

],

with x1 = uw1 and xi = uwi x ′i for 2 ≤ i ≤ k , and induced action:

(u, x ′2, . . . , x
′
n) 7→ (ζu , ζ−w2x ′2 , . . . , ζ

−wkx ′k , x
′
k+1, . . . , x

′
n).

Toric stack: Consider Spec k[x1, . . . , xn,T ] with Gm action with
weights (w1, . . . ,wn,−1). Let U be the open set where one of the xi
is a unit. Then Y ′ = [U/Gm].
It is an example of a fantastack [Geraschenko-Satriano], the stack
quotient of a Cox construction.
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What is J?

Definition

Consider the Zariski-Riemann space ZR(Y ) with its sheaf of ordered
groups Γ, and associated sheaf of rational ordered group Γ⊗Q.

A valuative Q-ideal is

γ ∈ H0 (ZR(Y ), (Γ⊗Q)≥0)) .

Iγ := {f ∈ OY : v(f ) ≥ γv∀v}.
v(I) := (min v(f ) : f ∈ I)v .

A center is in particular a valuative Q-ideal. It is also an idealistic
exponent or graded sequence of ideals.
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Admissibility and coefficient ideals

Definition

J is I-admissible if v(J) ≤ v(I).

Lemma

This is equivalent to IOY ′ = E `I ′, with J = J̄` and I ′ an ideal.

Indeed, on Y ′ the center J becomes E `, in particular principal.
This is more subtle in Quek’s theorem!

Proposition

A center J is I-admissible if and only if J(a1−1)! is C (I, a1)- admissible.

This is a consequence of Kollár’s D-balanced property of C (I, a1).
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The key theorems

Theorem

invp(I) is the maximal invariant of an I-admissible center.

Theorem

II is well-defined: it is the unique admissible center of maximal invariant.

Theorem

C (I, a1)OY ′ = E `
′
C ′ with invp′C

′ < invp(C (I, a1)).

Theorem

IOY ′ = E `I ′ with invp′I ′ < invp(I).
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The end

Thank you for your attention
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