
(1) (fa11 , . . . , fakk ) := (min{ai · v(fi)})v ∈ H0(ZR(Y ),ΓQ+)

Lemma 0.0.1. After passing to completions we may write

C(I, a) = (xa!1 ) + (xa!−11 C̃1) + · · ·+ (x1C̃a!−1) + C̃a!.

Theorem 0.0.2. The invariant invp is independent of the choices. It is upper-semi-continuous. It is
functorial for smooth morphisms: if f : Y1 → Y is smooth and p′ ∈ Y ′ then invp′(IOY1

) = invf(p′)(I).

Proof. The integer a1 = ordp(I) = max{a : Ip ⊆ map} requires no choices. Given a regular sequence
(x1, . . . , xn) extending (x1, . . . , xk), and given another maximal contact element x′1, we may choose constants
ti, and replace x2, . . . xn by x2 + t2x1, . . . xn+ tnx1 so that also (x′1, x2, . . . , xn) is a regular sequence. We can

now write x′1 = αx1 + f with α 6= 0 and f ∈ C̃1, and the ideal I[2] = C̄a1! remains unchanged. By induction
a2, . . . , ak are independent of choices. Hence (a1, . . . , ak) is independent of choices.

Since the closed subscheme V (D≤aI) is the locus where ordp(I) ≥ a, the order is upper-semi-continuous.
The subscheme V (D≤a1I) is contained in V (x1) on which invp(I[2]) is upper-semi-continuous by induction,
hence invp(I) is upper-semi-continuous.

Since both ordp(I) and the formation of coefficient ideals are functorial for smooth morphisms, the
invariant is functorial for smooth morphisms. ♣

Lemma 0.0.3. If x′1 is another maximal contact element such that (x′1, x2, . . . , xn) is a regular sequence,
then J = (x′1

a1 , xa22 . . . , xakk ) is also a center associated to I at p.

Again x′1 = αx1 + f with α 6= 0 and f ∈ C̃1, and the ideal I[2] = C̃a1! remains unchanged.

0.0.4. Basic properties. The description of the monomial valuation of J immediately provides the following
lemmas:

Lemma 0.0.5. If J is both I1-admissible and I2-admissible then J is I1+I2-admissible. If J is I-admissible
then Jk is Ik-admissible. More generally if Jcj is Ij-admissible then J

∑
cj is

∏
Ij-admissible.

Indeed if vJ(f) ≥ 1 and vJ(g) ≥ 1 then vJ(f + g) ≥ 1 and vJ(f c1 + gc2) ≥ c1 + c2, etc.

Lemma 0.0.6. If J is I-admissible then J ′ = J
a1−1
a1 is D(I)-admissible. If a1 > 1 and J

a1−1
a1 is I-admissible

then J is x1I-admissible.

Proof. For the first statement note that if
∑k
i=1 αi/ai ≥ 1 and αj ≥ 1 then

vJ

(
∂(xα1

1 · · ·xαn
n )

∂xj

)
=

k∑
i=1

αi/ai − 1/aj ≥ 1 − 1/a1,

so

vJ′

(
∂(xα1

1 · · ·xαn
n )

∂xj

)
≥ 1,

as needed. The other statement is similar. ♣

Lemma 0.0.7. For I0 ⊂ k[x2, . . . , xn] write Ĩ0 = I0k[x1, . . . , xn]. Assume a1 ≤ a2 and (xa22 , . . . x
ak
k ) is

I0-admissible. Then (xa11 , . . . x
ak
k ) is Ĩ0-admissible.

Here for generators of I0 we have
∑k
i=1 αi/ai =

∑k
i=2 αi/ai.

Lemma 0.0.8. J is I-admissible if and only if J (a1−1)! is C(I, a1)-admissible.

This combines Lemmas 0.0.5 and 0.0.6 for the terms defining C(I, a1).

Theorem 0.0.9. If (a1, . . . , ak) = invp(I), with corresponding parameters x1, . . . , xk, and J = (xa11 , . . . , x
ak
k )

a corresponding center, then J is I-admissible.
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Proof. Applying Lemma 0.0.8, we replace I by C(I, a1), rescale the invariant up to a1! and work on formal
completion. We may therefore write

I = (xa11 ) + (xa1−11 Ĩ1) + · · ·+ (x1Ĩa1−1) + Ĩa1
as in Lemma 0.0.1.

The inductive hypothesis implies (xa22 , . . . , x
ak
k ) is Īa1 -admissible. By Lemma 0.0.7 J is Ĩa1-admissible.

By Lemma 0.0.6 J is (xa1−j1 Ĩj)-admissible, So by Lemma 0.0.5 J is I-admissible, as needed. ♣

Theorem 0.0.10. The center J associated to I is unique.

Proof. Rescaling, we amy assume ai are integers and centers are represented by ideals. The problem is local,
and can be verified on formal completions at a point p ∈ Y , so that again we may write using the technical
proposition

I = (xa11 ) + (xa1−11 Ĩ1) + · · ·+ (x1Ĩa1−1) + Ĩa1 .
Let J = (xa11 , . . . , x

ak
k ) and J ′ = (x′1

a1 , x′2
a2 , . . . , x′k

ak) be centers associated to I.
Case 1: x1 = x′1. We may assume by induction x′i ≡ xi mod x1. Formula (1) shows that J = J ′ as

valuative Q-ideals.
Case 2: xi = x′i for i > 1. Write x′1 = x1 + f , where f ∈ Ĩ1. We may write J ′ = ((x′1)a1 , xa22 , . . . , x

ak
k ).

The basic lemmas imply that J is admissible for each term in J ′ hence J is admissible for the ideal J ′.
Reversing the roles we have that J ′ is admissible for the ideal J . This implies that J = J ′ as valuative
Q-ideals.

Case 3: J ′ is general but (x′1, x2, . . . , xn) is a regular sequence. By Lemma 0.0.3 the center
J ′1 := ((x′1)a1 , xa22 , . . . , x

ak
k ) is associated to I as well. By Case 2 J = J ′1 as valuative Q-ideals. By Case 1

J ′1 = J ′ as valuative Q-ideals, so J = J ′ as valuative Q-ideals, as needed.
Case 4: the general case. Since (x1, . . . , xn) is a regular sequence there are constants ti so that,

setting x′′i = xi + tix1, both (x1, x
′′
2 , . . . , x

′′
n) and (x′1, x

′′
2 , . . . , x

′′
n) are regular sequences. By Case 1, J =

(xa11 , x
′′
2
a2 , . . . , x′′n

an) as valuative Q-ideals. By Case 3, (xa11 , x
′′
2
a2 , . . . , x′′n

an) = J ′ as valuative Q-ideals, so
J = J ′ as valuative Q-ideals, as needed.

♣

Theorem 0.0.11. Assume Ip 6= (1), and let (a1, . . . , ak) = invp(I), with corresponding parameters x1, . . . , xk,

and J = (xa11 , . . . , x
ak
k ). For c ∈ N>0 write Y ′c → Y for the blowing up of the rescaled center J̄1/c :=(

x
1/(w1c)
1 , . . . , x

1/(wkc)
k

)
, with corresponding factorization IOY ′c = Ea1w1cI ′. Then for every point p′ over p

we have invp′(I ′) < invp(I).

Proof. If k = 0 the ideal is (0) and there is nothing to prove. When k = 1 the ideal is (xa11 ), which becomes
exceptional with proper transform (1). We now assume k > 1.

Again using Lemma 0.0.1, we choose formal coordinates, work with C̃ := C(I, a1), and write

C̃ = (xa1!1 ) + (xa1!−11 C̃1) + · · ·+ (x1C̃1) + C̃a1!.
Writing C̃OY ′c = Ea1!w1cC̃′, we will first show that invp′(C̃′) < (a1 − 1)! · (a1, a2, . . . , ak) for all points p′ over
p.

Write H = {x1 = 0}, and H ′ → H the blowing up of the reduced center J̄H associated to JH :=

(xa22 , . . . , x
ak
k ). By Lemma ?? the proper transform H̃ ′ → H of H via the blowing up of J̄ is the root stack

H ′( (cc′)
√
EH) of H ′ along EH ⊂ H ′, where c′ = lcm(w1,...,wk)

lcm(w2,...,wk)
. Therefore H̃ ′ is the blowing up of J̄

1/(cc′)
H ,

allowing for induction.
We now inspect the behavior on different charts. On the x1-chart we have x1 = uw1c so the first term

becomes (xa1!1 ) = Ea1!w1c · (1) and invp′ C̃′ = inv(1) = 0.1 This implies that on all other charts it suffices

to consider p′ ∈ H̃ ′ ∩ E, as all other points belong to the x1-chart. By the inductive assumption, for such
points we have

invp′(C̄′a1!) < (a1 − 1)! · (a2, . . . , ak).

1This reflects the fact that before passing to the coefficient ideal ord(I′) < a1 on this chart - it need not become a unit ideal
in general!
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Note that the term (xa1!1 ) in C̃ is transformed, via x1 = uw1cx′1 to the form Ea1!w1c(x′1
a1!). It follows that

ordp′(C̃′) ≤ a1!, and if ordp′(C̃′) < a1! then a fortiori invp′(C̃′) < invp(C̃).
If on the other hand ordp′(C̃′) = a1! then the variable x′1 is a maximal contact element. Using the inductive

assumption we compute

invp′((x
′a1!
1 ) + C̃′a1!) =

(
a1!, invp′(C̄′a1!)

)
< (a1!, invp′(C̄a1!)) = (a1 − 1)!(a1, . . . , ak).

Since C̃′ includes this ideal, we obtain again invp′(C̃′) < invp(C̃), as claimed.
We deduce that invp′(I ′) < invp(I) as well: Once again we may assume x′1 is a maximal contact element

and ordp′(I ′) = a1. We have the standard inclusions I ′(a1−1)! ⊂ C̃′ ⊂ C(I ′, a1), hence

invp′(I ′(a1−1)!) ≥ invp′(C̃′) ≥ invp′(C(I ′, a1)).

Since invp′(I ′(a1−1)!) = invp′(C(I ′, a1)) we have equalities throughout, hence

invp′(I ′) =
1

(a1 − 1)!
invp′(C̃′) <

1

(a1 − 1)!
invp(C̃) = invp(I),

as needed.
♣

3


