Resolution by weighted blowing up

Dan Abramovich, Brown University Joint work with Michael Tëmkin and Jarosław Włodarczyk

Also parallel work by M. McQuillan with G. Marzo
Rational points on irrational varieties

IHP, June 28, 2019

How to resolve a curve

To resolve a singular curve C
(1) find a singular point $x \in C$,
(2) blow it up.

Fact
p_{a} gets smaller.

How to resolve a surface

To resolve a singular surface S one wants to
(1) find the worst singular locus $C \in S$,
(2) C is smooth - blow it up.

Fact

This in general does not get better.

Example: Whitney's umbrella

Consider $S=V\left(x^{2}-y^{2} z\right) \quad$ (image by Eleonore Faber).

(1) The worst singularity is the origin.
(2) In the z chart we get
$x=x_{3} z, y=y_{3} z$, giving
$x_{3}^{2} z^{2}-y_{3}^{2} z^{3}=0, \quad$ or $\quad z^{2}\left(x_{3}^{2}-y_{3}^{2} z\right)=0$.
The first term is exceptional, the second is the same as S.
Classical solution:
(a) Remember exceptional divisors (this is OK)
(b) Remember their history (this is a pain)

Main result

Nevertheless:
Theorem ($\aleph-\mathrm{T}-\mathrm{W}, \mathrm{MM}, ~ " w e i g h t e d ~ H i r o n a k a ", ~ c h a r a c t e r i s t i c ~ 0) ~$
There is a procedure F associating to a singular subvariety $X \subset Y$ embedded with pure codimension c in a smooth variety Y, a center \bar{J} with blowing up $Y^{\prime} \rightarrow Y$ and proper transform $\left(X^{\prime} \subset Y^{\prime}\right)=F(X \subset Y)$ such that maxinv $\left(X^{\prime}\right)<\operatorname{maxinv}(X)$. In particular, for some n the iterate $\left(X_{n} \subset Y_{n}\right):=F^{\circ n}(X \subset Y)$ of F has X_{n} smooth.

Here

procedure

means
a functor for smooth surjective morphisms:
if $f: Y_{1} \rightarrow Y$ smooth then $J_{1}=f^{-1} J$ and $Y_{1}^{\prime}=Y_{1} \times_{Y} Y^{\prime}$.

Preview on invariants

For $p \in X$ we define

$$
\operatorname{inv}_{p}(X) \in \Gamma \subset \quad \mathbb{Q}_{\geq 0}^{\leq n},
$$

with 「 well-ordered, and show

Proposition

- it is lexicographically upper-semi-continuous, and
- $p \in X$ is smooth $\Leftrightarrow \operatorname{inv}_{p}(X)=\min \Gamma$.

We define $\operatorname{maxinv}(X)=\max _{p} \operatorname{inv}_{p}(X)$.

> Example $\operatorname{inv}_{p}\left(V\left(x^{2}-y^{2} z\right)\right)=(2,3,3)$

Remark

These invariants have been in our arsenal for ages.

Preview of centers

If $\operatorname{inv}_{p}(X)=\operatorname{maxinv}(X)=\left(a_{1}, \ldots, a_{k}\right)$ then, locally at p

$$
J=\left(x_{1}^{a_{1}}, \ldots, x_{k}^{a_{k}}\right)
$$

Write $\left(a_{1}, \ldots, a_{k}\right)=\ell\left(1 / w_{1}, \ldots, 1 / w_{k}\right)$ with $w_{i}, \ell \in \mathbb{N}$ and $\operatorname{gcd}\left(w_{1}, \ldots, w_{k}\right)=1$. We set

$$
\bar{J}=\left(x_{1}^{1 / w_{1}}, \ldots, x_{k}^{1 / w_{k}}\right)
$$

Example

For $X=V\left(x^{2}-y^{2} z\right)$ we have $J=\left(x^{2}, y^{3}, z^{3}\right) ; \bar{J}=\left(x^{1 / 3}, y^{1 / 2}, z^{1 / 2}\right)$.

Remark

J has been staring in our face for a while.

Example: blowing up Whitney's umbrella $x^{2}=y^{2} z$

The blowing up $Y^{\prime} \rightarrow Y$ makes $\bar{J}=\left(x^{1 / 3}, y^{1 / 2}, z^{1 / 2}\right)$ principal. Explicitly:

- The z chart has $x=w^{3} x_{3}, y=w^{2} y_{3}, z=w^{2}$ with chart

$$
Y^{\prime}=\left[\operatorname{Spec} \mathbb{C}\left[x_{3}, y_{3}, w\right] /(\pm 1)\right]
$$

with action of (± 1) given by $\left(x_{3}, y_{3}, w\right) \mapsto\left(-x_{3}, y_{3},-w\right)$.
The transformed equation is

$$
w^{6}\left(x_{3}^{2}-y_{3}^{2}\right)
$$

and the invariant of the proper transform $\left(x_{3}^{2}-y_{3}^{2}\right)$ is
$(2,2)<(2,3,3)$.
In fact, X has begged to be blown up like this all along.

Definition of $Y^{\prime} \rightarrow Y$

Let $\bar{J}=\left(x_{1}^{1 / w_{1}}, \ldots, x_{k}^{1 / w_{k}}\right)$. Define the graded algebra

$$
\mathcal{A}_{\bar{J}} \subset \mathcal{O}_{Y}[T]
$$

as the integral closure of the image of

$$
\begin{aligned}
\mathcal{O}_{Y}\left[Y_{1}, \ldots, Y_{n}\right] & \longrightarrow \mathcal{O}_{Y}[T] \\
Y_{i} & \longmapsto x_{i} T^{w_{i}} .
\end{aligned}
$$

Let

$$
S_{0} \subset \operatorname{Spec}_{Y} \mathcal{A}_{J}, \quad S_{0}=V\left(\left(\mathcal{A}_{J}\right)>0\right)
$$

Then

$$
B I_{\bar{J}}(Y):=\operatorname{Proj}_{Y} \mathcal{A}_{\bar{J}}:=\left[\left(\operatorname{Spec} \mathcal{A}_{\bar{J}} \backslash S_{0}\right) / \mathbb{G}_{m}\right]
$$

Description of $Y^{\prime} \rightarrow Y$

- Charts: The x_{1}-chart is

$$
\left[\operatorname{Spec} k\left[u, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right] / \mu_{w_{1}}\right]
$$

with $x_{1}=u^{w_{1}}$ and $x_{i}=u^{w_{i}} x_{i}^{\prime}$ for $2 \leq i \leq k$, and induced action:

$$
\left(u, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \mapsto\left(\zeta u, \zeta^{-w_{2}} x_{2}^{\prime}, \ldots, \zeta^{-w_{k}} x_{k}^{\prime}, x_{k+1}^{\prime}, \ldots, x_{n}^{\prime}\right) .
$$

- Toric stack: Y^{\prime} corresponds to the star subdivision $\Sigma:=v_{\bar{J}} \star \sigma$ along

$$
v_{\bar{J}}=\left(w_{1}, \ldots, w_{k}, 0, \ldots, 0\right)
$$

with a natural toric stack structure.

Examples: Defining J

(1) Consider $X=V\left(x^{5}+x^{3} y^{3}+y^{8}\right)$ at $p=(0,0)$; write $\mathcal{I}:=\mathcal{I}_{X}$.

- Define $a_{1}=\operatorname{ord}_{p} \mathcal{I}=5$,
- and $x_{1}=$ any variable appearing in a degree- a_{1} term $=x$.
- So $J_{\mathcal{I}}=\left(x^{5}, y^{\star}\right)$.
- To balance x^{5} with $x^{3} y^{3}$ we need x^{2} and y^{3} to have the same weight, so x^{5} and $y^{15 / 2}$ have the same weight.
- Since $15 / 2<8$ we use

$$
J_{\mathcal{I}}=\left(x^{5}, y^{15 / 2}\right) \quad \text { and } \quad \overline{J_{\mathcal{I}}}=\left(x^{1 / 3}, y^{1 / 2}\right)
$$

(2) If instead we took $X=V\left(x^{5}+x^{3} y^{3}+y^{7}\right)$, then since $7<15 / 2$ we would use

$$
J_{\mathcal{I}}=\left(x^{5}, y^{7}\right) \quad \text { and } \quad \bar{J}_{\mathcal{I}}=\left(x^{1 / 7}, y^{1 / 5}\right)
$$

Examples: describing the blowing up

(1) Considering $X=V\left(x^{5}+x^{3} y^{3}+y^{8}\right)$ at $p=(0,0)$,

- the x-chart has $x=u^{3}, y=u^{2} y_{1}$ with μ_{3}-action, and equation

$$
u^{15}\left(1+y_{1}^{3}+u y_{1}^{8}\right)
$$

with smooth proper transform.

- The y-chart has $y=v^{2}, x=v^{3} x_{1}$ with μ_{2}-action, and equation

$$
v^{15}\left(x_{1}^{5}+x_{1}^{3}+u\right)
$$

with smooth proper transform.
(2) Considering $X=V\left(x^{5}+x^{3} y^{3}+y^{7}\right)$ at $p=(0,0)$,

- the x-chart has $x=u^{7}, y=u^{5} y_{1}$ with μ_{7}-action, and equation

$$
u^{35}\left(1+u y_{1}^{3}+y_{1}^{7}\right)
$$

with smooth proper transform.

- The y-chart has $y=v^{5}, x=v^{7} x_{1}$ with μ_{5}-action, and equation

$$
v^{35}\left(x_{1}^{5}+u x_{1}^{3}+1\right)
$$

with smooth proper transform.

Coefficient ideals

We must restrict to $x_{1}=0$ the data of all

$$
\mathcal{I}, \mathcal{D} \mathcal{I}, \ldots, \mathcal{D}^{a_{1}-1} \mathcal{I}
$$

with corresponding weights

$$
a_{1}, a_{1}-1, \ldots, 1
$$

We combine these in

$$
C\left(\mathcal{I}, a_{1}\right):=\sum f\left(\mathcal{I}, \mathcal{D} \mathcal{I}, \ldots, \mathcal{D}^{a_{1}-1} \mathcal{I}\right)
$$

where f runs over monomials $f=t_{0}^{b_{0}} \cdots t_{a_{1}-1}^{b_{a_{1}-1}}$ with weights

$$
\sum b_{1}\left(a_{1}-i\right) \geq a_{1}!
$$

Define $\mathcal{I}[2]=\left.C\left(\mathcal{I}, a_{1}\right)\right|_{x_{1}=0}$.

Defining $J_{\mathcal{I}}$

Definition

Let $a_{1}=\operatorname{ord}_{p} \mathcal{I}$, with x_{1} a regular element in $\mathcal{D}^{a_{1}-1} \mathcal{I}$ - a maximal contact. Suppose \mathcal{I} [2] has invariant $\operatorname{inv}_{p}(\mathcal{I}[2])$ defined with parameters $\bar{x}_{2}, \ldots, \bar{x}_{k}$, with lifts x_{2}, \ldots, x_{k}. Set

$$
\operatorname{inv}_{p}(\mathcal{I})=\left(a_{1}, \ldots, a_{k}\right):=\left(a_{1}, \frac{\operatorname{inv}_{p}(\mathcal{I}[2])}{\left(a_{1}-1\right)!}\right)
$$

and

$$
J_{\mathcal{I}}=\left(x_{1}^{a_{1}}, \ldots, x_{k}^{a_{k}}\right)
$$

Example

(1) for $X=V\left(x^{5}+x^{3} y^{3}+y^{8}\right)$ we have $\mathcal{I}[2]=(y)^{180}$, so

$$
J_{\mathcal{I}}=\left(x^{5}, y^{180 / 24}\right)=\left(x^{5}, y^{15 / 2}\right)
$$

(2) for $X=V\left(x^{5}+x^{3} y^{3}+y^{7}\right)$ we have $\mathcal{I}[2]=(y)^{7 \cdot 24}$, so $J_{\mathcal{I}}=\left(x^{5}, y^{7}\right)$.

What is J ?

Definition

Consider the Zariski-Riemann space $\mathbf{Z R}(X)$ with its sheaf of ordered groups Γ, and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

- A valuative \mathbb{Q}-ideal is

$$
\left.\gamma \in H^{0}\left(\mathbf{Z R}(X),(\Gamma \otimes \mathbb{Q})_{\geq 0}\right)\right)
$$

- $\mathcal{I}_{\gamma}:=\left\{f \in \mathcal{O}_{X}: v(f) \geq \gamma_{v} \forall v\right\}$.
- $v(\mathcal{I}):=(\min v(f): f \in \mathcal{I})_{v}$.

A center is in particular a valuative \mathbb{Q}-ideal.

Admissibility and coefficient ideals

Definition
 J is \mathcal{I}-admissible if $v(J) \leq v(\mathcal{I})$.

Lemma

This is equivalent to $\mathcal{I} \mathcal{O}_{Y^{\prime}}=E^{l} \mathcal{I}^{\prime}$, with $J=\bar{J}^{\ell}$ and \mathcal{I}^{\prime} an ideal.
Indeed, on Y^{\prime} the center J becomes E^{ℓ}, in particular principal.

Proposition

J is \mathcal{I}-admissible if and only if $J^{\left(a_{1}-1\right)!}$ is $C\left(\mathcal{I}, a_{1}\right)$ - admissible.
This is a consequence of the following technical, but known, lemma.

Structure of coefficient ideals

Lemma

If $\operatorname{ord}_{p}(\mathcal{I})=a_{1}$ and x_{1} a corresponding maximal contact, then in $\mathbb{C} \llbracket x_{1}, \ldots, x_{n} \rrbracket$ we have

$$
C(\mathcal{I}, a)=\left(x_{1}^{a_{1}!}\right)+\left(x_{1}^{a_{1}!-1} \tilde{\mathcal{C}}_{1}\right)+\cdots+\left(x_{1} \tilde{\mathcal{C}}_{a_{1}!-1}\right)+\tilde{\mathcal{C}}_{a_{1}!}
$$

where

$$
\mathcal{C}_{a_{1}!} \subset\left(x_{2}, \ldots, x_{n}\right)^{a!} \subset k \llbracket x_{2}, \ldots, x_{n} \rrbracket,
$$

where $\mathcal{C}_{j-1}:=\mathcal{D} \leq 1\left(\mathcal{C}_{j}\right)$ satisfy $\mathcal{C}_{k} \mathcal{C}_{l} \subset \mathcal{C}_{k+1}$, and $\tilde{\mathcal{C}}_{j}=\mathcal{C}_{j} k \llbracket x_{1}, \ldots, x_{n} \rrbracket$.
The lemma and proposition are proven by looking at monomials.

The key theorems

Theorem
 The invariant is well-defined, USC, functorial.

Theorem
The center is well-defined.

Theorem
 $J_{\mathcal{I}}$ is \mathcal{I}-admissible.

Theorem
$C\left(\mathcal{I}, a_{1}\right) \mathcal{O}_{Y^{\prime}}=E^{\ell^{\prime}} C^{\prime}$ with $\operatorname{inv}_{p^{\prime}} C^{\prime}<\operatorname{inv}_{p}\left(C\left(\mathcal{I}, a_{1}\right)\right)$.

Theorem
$\mathcal{I} \mathcal{O}_{Y^{\prime}}=E^{\ell} \mathcal{I}^{\prime}$ with $\operatorname{inv}_{p^{\prime}} \mathcal{I}^{\prime}<\operatorname{inv}_{p}(\mathcal{I})$.

The end

Thank you for your attention

