Resolution and logarithmic resolution by weighted blowing up

Dan Abramovich, Brown University

Work with Michael Tëmkin and Jarosław Włodarczyk and work by Ming Hao Quek

> Also parallel work by M. McQuillan Simons Conference on Rationality

> > New York, July 27, 2020

To resolve a singular variety X one wants to

- (1) find the worst singular locus $S \subset X$,
- (2) Hopefully S is smooth blow it up.

To resolve a singular variety X one wants to

(1) find the worst singular locus $S \subset X$,

(2) Hopefully S is smooth - blow it up.

Fact

This works for curves but not in general.

Consider
$$X = V(x^2 - y^2 z)$$

3

イロト イポト イヨト イヨト

Consider $X = V(x^2 - y^2 z)$ (image by Eleonore Faber).

Consider $X = V(x^2 - y^2 z)$ (image by Eleonore Faber).

- The worst singularity is the origin.
- In the z chart we get x = x'z, y = y'z, giving $x'^2z^2 - y'^2z^3 = 0, \text{ or } z^2(x'^2 - y'^2z) = 0.$

Consider $X = V(x^2 - y^2 z)$ (image by Eleonore Faber).

- The worst singularity is the origin.
- In the *z* chart we get x = x'z, y = y'z, giving $x'^2z^2 - y'^2z^3 = 0, \text{ or } z^2(x'^2 - y'^2z) = 0.$

The first term is exceptional, the second is the same as X.

▲冊▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Two theorems Nevertheless:¹

Theorem (ℵ-T-W, McQuillan, 2019, characteristic 0)

There is a functor F associating to a singular subvariety^a $X \subset Y$ of a smooth variety Y, a center \overline{J} with stack theoretic weighted blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\max(X') < \max(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n smooth.

^aor substack

"context"
•

Abramovich

Two theorems Nevertheless:¹

Theorem (ℵ-T-W, McQuillan, 2019, characteristic 0)

There is a functor F associating to a singular subvariety^a $X \subset Y$ of a smooth variety Y, a center \overline{J} with stack theoretic weighted blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\max(X') < \max(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n smooth.

^aor substack

Theorem (Quek, 2020, characteristic 0)

There is a functor F associating to a logarithmically singular subvariety^a $X \subset Y$ of a logarithmically smooth variety Y, a logarithmic center \overline{J} with stack theoretic logarithmic blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\max loginv(X') < \max loginv(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n logarithmically smooth.

^aor subtack

¹See slides "context"

Abramovich

イロト 不得 トイヨト イヨト 二日

• For
$$X = V(x^2 - y^2 z)$$
 we have $inv_p(X) = (2, 3, 3)$

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- For $X = V(x^2 y^2 z)$ we have $inv_p(X) = (2, 3, 3)$
- We read it from the degrees of terms.

- 3

• For
$$X = V(x^2 - y^2 z)$$
 we have $inv_p(X) = (2, 3, 3)$

• We read it from the degrees of terms.

• The center is:

$$J = (x^2, y^3, z^3); \bar{J} = (x^{1/3}, y^{1/2}, z^{1/2}).$$

• For
$$X = V(x^2 - y^2 z)$$
 we have $inv_p(X) = (2, 3, 3)$

• We read it from the degrees of terms.

• The center is: $J = (x^2, y^3, z^3); \overline{J} = (x^{1/3}, y^{1/2}, z^{1/2}).$

The blowing up $Y' \to Y$ makes $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly:

• The z chart has $x = w^3 x', y = w^2 y', z = w^2$ with chart

$$Y' = [\operatorname{Spec} \mathbb{C}[x', y', w] / (\pm 1)],$$

with action of (±1) given by $(x', y', w) \mapsto (-x', y', -w).$

• For
$$X = V(x^2 - y^2 z)$$
 we have $inv_p(X) = (2, 3, 3)$

• We read it from the degrees of terms.

• The center is: $J = (x^2, y^3, z^3); \overline{J} = (x^{1/3}, y^{1/2}, z^{1/2}).$

The blowing up $Y' \to Y$ makes $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly:

• The z chart has $x = w^3 x', y = w^2 y', z = w^2$ with chart

$$Y' = [\operatorname{Spec} \mathbb{C}[x', y', w] / (\pm 1)],$$

with action of (± 1) given by $(x', y', w) \mapsto (-x', y', -w)$. The transformed equation is

$$w^{6}(x'^{2}-y'^{2}),$$

• • = • • = •

• For
$$X = V(x^2 - y^2 z)$$
 we have $inv_p(X) = (2, 3, 3)$

• We read it from the degrees of terms.

• The center is: $J = (x^2, y^3, z^3); \overline{J} = (x^{1/3}, y^{1/2}, z^{1/2}).$

The blowing up $Y' \to Y$ makes $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly:

• The z chart has $x = w^3 x', y = w^2 y', z = w^2$ with chart

$$Y' = [\operatorname{Spec} \mathbb{C}[x', y', w] / (\pm 1)],$$

with action of (± 1) given by $(x', y', w) \mapsto (-x', y', -w)$. The transformed equation is

$$w^{6}(x'^{2}-y'^{2}),$$

and the invariant of the proper transform $x'^2 - y'^2$ is (2,2) < (2,3,3).

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_Y$.

Definition

For $p \in Y$ let $\operatorname{ord}_p(\mathcal{I}) = \max\{a : \mathcal{I} \subseteq \mathfrak{m}_p^a\}$.

- 3

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_Y$.

Definition

For $p \in Y$ let $\operatorname{ord}_p(\mathcal{I}) = \max\{a : \mathcal{I} \subseteq \mathfrak{m}_p^a\}.$

• We denote by \mathcal{D}^a the sheaf of *a*-th order differential operators.

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_Y$.

Definition

For $p \in Y$ let $\operatorname{ord}_p(\mathcal{I}) = \max\{a : \mathcal{I} \subseteq \mathfrak{m}_p^a\}.$

- We denote by \mathcal{D}^a the sheaf of *a*-th order differential operators.
- We note that $\operatorname{ord}_p(\mathcal{I}) = \min\{a : \mathcal{D}^a(\mathcal{I}_p)\} = (1).$
- The invariant starts with $a_1 = \operatorname{ord}_p(\mathcal{I})$.

We fix Y smooth and $\mathcal{I} \subset \mathcal{O}_Y$.

Definition

For $p \in Y$ let $\operatorname{ord}_p(\mathcal{I}) = \max\{a : \mathcal{I} \subseteq \mathfrak{m}_p^a\}.$

- We denote by \mathcal{D}^a the sheaf of *a*-th order differential operators.
- We note that $\operatorname{ord}_p(\mathcal{I}) = \min\{a : \mathcal{D}^a(\mathcal{I}_p)\} = (1).$
- The invariant starts with $a_1 = \operatorname{ord}_p(\mathcal{I})$.

Proposition

The order is upper semicontinuous.

Proof.

$$V(\mathcal{D}^{a-1}\mathcal{I}) = \{p : \operatorname{ord}_p(\mathcal{I}) \geq a\}.$$

3

- 4 同 6 4 日 6 4 日 6

Maximal contact (following Kollár's book)

Definition (Giraud, Hironaka)

A regular parameter $x_1 \in \mathcal{D}^{a_1-1}\mathcal{I}_p$ is called a maximal contact element.

The center starts with $(x_1^{a_1},\ldots)$.

Maximal contact (following Kollár's book)

Definition (Giraud, Hironaka)

A regular parameter $x_1 \in \mathcal{D}^{a_1-1}\mathcal{I}_p$ is called a maximal contact element.

The center starts with $(x_1^{a_1},\ldots)$.

Lemma (Giraud, Hironaka)

In characteristic 0 a maximal contact exists on an open neighborhood of p.

Since $1 \in D^{a_1} \mathcal{I}_p$ there is x_1 with derivative 1. This derivative is a unit in a neighborhood.

Maximal contact (following Kollár's book)

Definition (Giraud, Hironaka)

A regular parameter $x_1 \in \mathcal{D}^{a_1-1}\mathcal{I}_p$ is called a maximal contact element.

The center starts with $(x_1^{a_1},\ldots)$.

Lemma (Giraud, Hironaka)

In characteristic 0 a maximal contact exists on an open neighborhood of p.

Since $1 \in \mathcal{D}^{a_1}\mathcal{I}_p$ there is x_1 with derivative 1. This derivative is a unit in a neighborhood.

Example

For
$$\mathcal{I} = (x^2 - y^2 z)$$
 we have $\operatorname{ord}_p \mathcal{I} = 2$ with $x_1 = x$ (or $\alpha x + \text{h.o.t.}$ in $\mathcal{D}(\mathcal{I})$).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Coefficient ideals (treated following Kollár)

We must restrict to $x_1 = 0$ the data of all

$$\mathcal{I}, \mathcal{DI}, \ldots, \mathcal{D}^{\mathsf{a}_1-1}\mathcal{I}$$

with corresponding weights $a_1, a_1 - 1, \ldots, 1$.

Coefficient ideals (treated following Kollár)

We must restrict to $x_1 = 0$ the data of all

$$\mathcal{I}, \ \mathcal{DI}, \ \ldots, \ \mathcal{D}^{\mathsf{a}_1-1}\mathcal{I}$$

with corresponding weights $a_1, a_1 - 1, \ldots, 1$. We combine these in

$$C(\mathcal{I}, a_1) := \sum f(\mathcal{I}, \mathcal{DI}, \dots, \mathcal{D}^{a_1-1}\mathcal{I}),$$

where f runs over monomials $f = t_0^{b_0} \cdots t_{a_1-1}^{b_{a_1-1}}$ with weights

$$\sum b_i(a_1-i) \geq a_1!.$$

Define $\mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0}$.

Again $a_1 = \operatorname{ord}_p \mathcal{I}$ and x_1 maximal contact. We denoted $\mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0}$ (with order $\geq a_1$!).

 $\begin{array}{l} \text{Again } a_1 = \text{ord}_p \mathcal{I} \text{ and } x_1 \text{ maximal contact.} \\ \text{We denoted} \quad \mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0} \quad (\text{with order} \geq a_1!). \end{array}$

Definition

Suppose $\mathcal{I}[2]$ has invariant $inv_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k .

 $\begin{array}{l} \text{Again } a_1 = \text{ord}_p \mathcal{I} \text{ and } x_1 \text{ maximal contact.} \\ \text{We denoted} \quad \mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0} \quad (\text{with order} \geq a_1!). \end{array}$

Definition

Suppose $\mathcal{I}[2]$ has invariant $inv_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k . Set

$$\operatorname{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\operatorname{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right)$$

and

$$J_{\mathcal{I}} = (x_1^{a_1}, x_2^{a_2}, \ldots, x_k^{a_k}).$$

Again $a_1 = \operatorname{ord}_p \mathcal{I}$ and x_1 maximal contact. We denoted $\mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0}$ (with order $\geq a_1$!).

Definition

Suppose $\mathcal{I}[2]$ has invariant $\operatorname{inv}_{p}(\mathcal{I}[2])$ defined with parameters $\bar{x}_{2}, \ldots, \bar{x}_{k}$, with lifts x_2, \ldots, x_k . Set

$$\mathsf{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\mathsf{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right)$$

and

$$J_{\mathcal{I}}=(x_1^{a_1},x_2^{a_2},\ldots,x_k^{a_k}).$$

Write $(a_1,\ldots,a_k) = \ell(1/w_1,\ldots,1/w_k)$ with $w_i, \ell \in \mathbb{N}$ and $gcd(w_1,\ldots,w_k) = 1$. We set

$$\bar{J}_{\mathcal{I}} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k}).$$

What is J?

Definition

Consider the Zariski-Riemann space $\mathbf{ZR}(Y)$ with its sheaf of ordered groups Γ , and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

• A valuative Q-ideal is

 $\gamma \in H^0\left(\mathsf{ZR}(Y), (\Gamma\otimes \mathbb{Q})_{\geq 0}\right)\right).$

What is J?

Definition

Consider the Zariski-Riemann space $\mathbf{ZR}(Y)$ with its sheaf of ordered groups Γ , and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

• A valuative Q-ideal is

 $\gamma \in H^0\left(\mathsf{ZR}(Y), (\Gamma\otimes \mathbb{Q})_{\geq 0}\right)$.

•
$$\mathcal{I}_{\gamma} := \{ f \in \mathcal{O}_{Y} : v(f) \ge \gamma_{v} \forall v \}.$$

• $\mathcal{I} \mapsto v(\mathcal{I}) := (\min v(f) : f \in \mathcal{I})_{v}.$

∃ → (∃ →

What is J?

Definition

Consider the Zariski-Riemann space $\mathbf{ZR}(Y)$ with its sheaf of ordered groups Γ , and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

• A valuative Q-ideal is

 $\gamma \in H^0\left(\mathsf{ZR}(Y), (\Gamma\otimes \mathbb{Q})_{\geq 0}\right)\right).$

•
$$\mathcal{I}_{\gamma} := \{ f \in \mathcal{O}_{Y} : v(f) \ge \gamma_{v} \forall v \}.$$

• $\mathcal{I} \mapsto v(\mathcal{I}) := (\min v(f) : f \in \mathcal{I})_{v}.$

A center $(x_1^{a_1}, \ldots, x_k^{a_k})$ is in particular a valuative \mathbb{Q} -ideal.

$$\left(\min_{i}\left\{a_{i}v(x_{i})\right\}\right)_{v}$$

It is also an idealistic exponent or graded sequence of ideals.

Examples of $J_{\mathcal{I}}$

$$\operatorname{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\operatorname{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right), \quad \text{with} \quad J_{\mathcal{I}} = (x_1^{a_1}, \dots, x_k^{a_k}).$$

Example

(1) for
$$X = V(x^2 + y^2 z)$$

New York, July 27, 2020

◆□ > ◆圖 > ◆臣 > ◆臣 >

11 / 18

Examples of $J_{\mathcal{I}}$

$$\mathsf{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\mathsf{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right), \quad \mathsf{with} \quad J_{\mathcal{I}} = (x_1^{a_1}, \dots, x_k^{a_k}).$$

Example

(1) for
$$X = V(x^2 + y^2 z)$$
 we have $\mathcal{I}[2] = (y^2 z)$, leading to $J_{\mathcal{I}} = (x^2, y^3, z^3), \quad \overline{J}_{\mathcal{I}} = (x^{1/3}, y^{1/2}, z^{1/2})$
(2) for $X = V(x^5 + x^3y^3 + y^8)$

New York, July 27, 2020

◆□ > ◆圖 > ◆臣 > ◆臣 >

Examples of $J_{\mathcal{I}}$

$$\operatorname{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\operatorname{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right), \quad \text{with} \quad J_{\mathcal{I}} = (x_1^{a_1}, \dots, x_k^{a_k}).$$

Example

(1) for
$$X = V(x^2 + y^2 z)$$
 we have $\mathcal{I}[2] = (y^2 z)$, leading to $J_{\mathcal{I}} = (x^2, y^3, z^3)$, $\bar{J}_{\mathcal{I}} = (x^{1/3}, y^{1/2}, z^{1/2})$
(2) for $X = V(x^5 + x^3y^3 + y^8)$ we have $\mathcal{I}[2] = (y)^{180}$, so $J_{\mathcal{I}} = (x^5, y^{180/24}) = (x^5, y^{15/2})$, $\bar{J}_{\mathcal{I}} = (x^{1/3}, y^{1/2})$.

Implementation: Jonghyun Lee, Anne Frühbis-Krüger.

< 行

A B F A B F

Definition of $Y' \to Y$

Let $ar{J}=(x_1^{1/w_1},\ldots,x_k^{1/w_k}).$ Define the graded algebra $\mathcal{A}_{ar{I}}\ \subset\ \mathcal{O}_Y[\mathcal{T}]$

as the integral closure of the image of

$$\mathcal{O}_{Y}[Y_{1},\ldots,Y_{n}]\longrightarrow \mathcal{O}_{Y}[T]$$
$$Y_{i} \longmapsto x_{i}T^{w_{i}}.$$

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Definition of $Y' \to Y$

Let $ar{J}=(x_1^{1/w_1},\ldots,x_k^{1/w_k}).$ Define the graded algebra $\mathcal{A}_{ar{J}}\ \subset\ \mathcal{O}_Y[\mathcal{T}]$

as the integral closure of the image of

$$\mathcal{O}_{Y}[Y_{1},\ldots,Y_{n}] \longrightarrow \mathcal{O}_{Y}[T]$$
$$Y_{i} \longmapsto x_{i} T^{w_{i}}.$$

Let

$$S_0 \subset \operatorname{Spec}_Y \mathcal{A}_{\bar{J}}, \quad S_0 = V((\mathcal{A}_{\bar{J}})_{>0}).$$

Then

$$Bl_{\overline{J}}(Y) := \mathcal{P}roj_{Y}\mathcal{A}_{\overline{J}} := [(\operatorname{Spec} \mathcal{A}_{\overline{J}} \smallsetminus S_{0}) / \mathbb{G}_{m}].$$

Local description of $Y' \rightarrow Y$

 $Y' = \mathcal{P}roj_Y (\oplus \mathcal{I}_{\overline{I}^n})$, the stack-theoretic $\mathcal{P}roj^2$,

²see slides "blowup"

Abramovich

Local description of $Y' \rightarrow Y$

$$Y' = \mathcal{P}roj_Y (\oplus \mathcal{I}_{\bar{J}^n})$$
, the stack-theoretic $\mathcal{P}roj^2$, explicitly:

• The x₁-chart is

$$[\text{Spec } k[u, x'_2, \dots, x'_n] / \mu_{w_1}],$$

with $x_1 = u^{w_1}$ and $x_i = u^{w_i} x'_i$ for $2 \le i \le k$, and induced action:

$$(u, x'_2, \ldots, x'_n) \mapsto (\zeta u, \zeta^{-w_2} x'_2, \ldots, \zeta^{-w_k} x'_k, x'_{k+1}, \ldots, x'_n).$$

²see slides "blowup"

3

Properties of the invariant

Proposition

- inv_p is well-defined.
- inv_p is upper-semi-continuous.
- inv_p is functorial.
- inv_p takes values in a well-ordered set.^a

"see slides "invariant"

We define $maxinv(X) = max_p inv_p(X)$.

A B < A B <</p>

Properties of the invariant

Proposition

- inv_p is well-defined.
- inv_p is upper-semi-continuous.
- inv_p is functorial.
- inv_p takes values in a well-ordered set.^a

"see slides "invariant"

We define $\max(X) = \max_p \operatorname{inv}_p(X)$. The invariant is well defined because of the MC-invariance property of $C(\mathcal{I}, a_1)$. The rest is induction!

Admissibility and coefficient ideals

Definition

J is \mathcal{I} -admissible if $J \leq v(\mathcal{I})$.^a

"See slides "admissibility"

Admissibility and coefficient ideals

Definition

J is \mathcal{I} -admissible if $J \leq v(\mathcal{I}).^a$

"See slides "admissibility"

Proposition

A center J is \mathcal{I} -admissible if and only if $J^{(a_1-1)!}$ is $C(\mathcal{I}, a_1)$ -admissible.

The key theorems

Theorem

- $\operatorname{inv}_p(\mathcal{I})$ is the maximal invariant of an \mathcal{I} -admissible center.
- J_I is well-defined: it is the unique admissible center of maximal invariant.^a

^aslides "uniqueness"

★ 3 > < 3 >

The key theorems

Theorem

- $inv_p(\mathcal{I})$ is the maximal invariant of an \mathcal{I} -admissible center.
- J_I is well-defined: it is the unique admissible center of maximal invariant.^a

^aslides "uniqueness"

Theorem

•
$$C(\mathcal{I}, a_1)\mathcal{O}_{Y'} = E^{\ell'}C'$$
 with $\operatorname{inv}_{p'}C' < \operatorname{inv}_p(C(\mathcal{I}, a_1))$.
• $\mathcal{I}\mathcal{O}_{Y'} = E^{\ell}\mathcal{I}'$ with $\operatorname{inv}_{p'}\mathcal{I}' < \operatorname{inv}_p(\mathcal{I})$.^a

"Slides "principaliztion"

•
$$\mathcal{I} = (x^2yz + yz^4) \subset \mathbb{C}[x, y, z].$$

< 行

17 / 18

•
$$\mathcal{I} = (x^2yz + yz^4) \subset \mathbb{C}[x, y, z].$$

• Then maximv(\mathcal{I}) = (4, 4, 4) with center $J = (x^4, y^4, z^4)$, a usual blowup.

글 > - + 글 >

- 3

•
$$\mathcal{I} = (x^2yz + yz^4) \subset \mathbb{C}[x, y, z].$$

- Then maximv(\mathcal{I}) = (4, 4, 4) with center $J = (x^4, y^4, z^4)$, a usual blowup.
- The z-chart has $\mathcal{I}' = (y(x^2 + z))$. The new invariant is (2,2) with reduced center $(y, x^2 + z)$, which is tangent to the exceptional z = 0.

•
$$\mathcal{I} = (x^2yz + yz^4) \subset \mathbb{C}[x, y, z].$$

- Then maximv(\mathcal{I}) = (4, 4, 4) with center $J = (x^4, y^4, z^4)$, a usual blowup.
- The z-chart has $\mathcal{I}' = (y(x^2 + z))$. The new invariant is (2,2) with reduced center $(y, x^2 + z)$, which is tangent to the exceptional z = 0.
- Instead work with logarithmic derivative in z.

A B F A B F

•
$$\mathcal{I} = (x^2yz + yz^4) \subset \mathbb{C}[x, y, z].$$

- Then maximv(\mathcal{I}) = (4, 4, 4) with center $J = (x^4, y^4, z^4)$, a usual blowup.
- The z-chart has $\mathcal{I}' = (y(x^2 + z))$. The new invariant is (2,2) with reduced center $(y, x^2 + z)$, which is tangent to the exceptional z = 0.
- Instead work with logarithmic derivative in z.
- maxloginv(\mathcal{I}') = (3,3, ∞) with center ($y^3, x^3, z^{3/2}$) and reduced logarithmic center ($y, x, z^{1/2}$).

• • • • • • • • • •

•
$$\mathcal{I} = (x^2yz + yz^4) \subset \mathbb{C}[x, y, z].$$

- Then maximv(\mathcal{I}) = (4, 4, 4) with center $J = (x^4, y^4, z^4)$, a usual blowup.
- The z-chart has $\mathcal{I}' = (y(x^2 + z))$. The new invariant is (2,2) with reduced center $(y, x^2 + z)$, which is tangent to the exceptional z = 0.
- Instead work with logarithmic derivative in z.
- maxloginv(\mathcal{I}') = (3,3, ∞) with center ($y^3, x^3, z^{3/2}$) and reduced logarithmic center ($y, x, z^{1/2}$).
- This reduces logarithmic invariants respecting logarithmic, hence exceptional, divisors.

▲■▼ ▲ ■ ▼ ▲ ■ ▼ ■ ● ● ● ●

Thank you for your attention

くほと くほと くほと

3