Definition

J is \mathcal{I} -admissible if $J \leq v(\mathcal{I})$.

Lemma

This is equivalent to $\mathcal{IO}_{Y'} = E^{\ell}\mathcal{I}'$, with $J = \overline{J}^{\ell}$ and \mathcal{I}' an ideal.

• Indeed, on Y' the center J becomes E^{ℓ} , in particular principal.

- 3

A B F A B F

< 4 P→

Definition

J is \mathcal{I} -admissible if $J \leq v(\mathcal{I})$.

Lemma

This is equivalent to $\mathcal{IO}_{Y'} = E^{\ell}\mathcal{I}'$, with $J = \overline{J}^{\ell}$ and \mathcal{I}' an ideal.

- Indeed, on Y' the center J becomes E^{ℓ} , in particular principal.
- So on Y', we have $J \leq v(\mathcal{I}) \iff E^\ell \supseteq \mathcal{IO}_{Y'}$.
- This is more subtle in Quek's theorem!

- 3

< 回 ト < 三 ト < 三 ト

Definition

J is \mathcal{I} -admissible if $J \leq v(\mathcal{I})$.

Lemma

This is equivalent to $\mathcal{IO}_{Y'} = E^{\ell}\mathcal{I}'$, with $J = \overline{J}^{\ell}$ and \mathcal{I}' an ideal.

- Indeed, on Y' the center J becomes E^{ℓ} , in particular principal.
- So on Y', we have $J \leq v(\mathcal{I}) \iff E^{\ell} \supseteq \mathcal{IO}_{Y'}$.
- This is more subtle in Quek's theorem!
- Write $J = (x_1^{a_1}, \dots, x_k^{a_k})$ and $\mathcal{I} = (f_1, \dots, f_m)$.
- Expand $f_i = \sum c_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_1}$.
- $J < v(\mathcal{I}) \quad \Leftrightarrow \quad v_J(f_i) \geq 1 \text{ for all } i$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Definition

J is \mathcal{I} -admissible if $J \leq v(\mathcal{I})$.

Lemma

This is equivalent to $\mathcal{IO}_{Y'} = E^{\ell}\mathcal{I}'$, with $J = \overline{J}^{\ell}$ and \mathcal{I}' an ideal.

- Indeed, on Y' the center J becomes E^{ℓ} , in particular principal.
- So on Y', we have $J \leq v(\mathcal{I}) \iff E^\ell \supseteq \mathcal{IO}_{Y'}$.
- This is more subtle in Quek's theorem!
- Write $J = (x_1^{a_1}, \ldots, x_k^{a_k})$ and $\mathcal{I} = (f_1, \ldots, f_m)$.
- Expand $f_i = \sum c_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_1}$.

•
$$J < v(\mathcal{I}) \quad \Leftrightarrow \quad v_J(f_i) \geq 1$$
 for all i

• $\Leftrightarrow \quad \sum \frac{\alpha_j}{a_i} \ge 1$ for all *i* and α such that $c_{\alpha} \neq 0$.

Consequences

- J is $\mathcal{I}_1, \mathcal{I}_2$ -admissible \Rightarrow J is $\mathcal{I}_1 + \mathcal{I}_2$ -admissible.
- J is \mathcal{I} -admissible $\Rightarrow J^a$ is \mathcal{I}^a -admissible.
- J is \mathcal{I} -admissible $\Rightarrow J^{1-\frac{1}{a_1}}$ is $\mathcal{D}(\mathcal{I})$ -admissible.

Consequences

- J is $\mathcal{I}_1, \mathcal{I}_2$ -admissible $\Rightarrow J$ is $\mathcal{I}_1 + \mathcal{I}_2$ -admissible.
- J is \mathcal{I} -admissible $\Rightarrow J^a$ is \mathcal{I}^a -admissible.
- J is \mathcal{I} -admissible $\Rightarrow J^{1-\frac{1}{a_1}}$ is $\mathcal{D}(\mathcal{I})$ -admissible.

Proof. $v_J\left(\frac{\partial x^{\alpha}}{\partial x_j}\right) = \sum \frac{\alpha_i}{a_i} - \frac{1}{a_j} \ge 1 - \frac{1}{a_1}.$

Consequences

- J is $\mathcal{I}_1, \mathcal{I}_2$ -admissible $\Rightarrow J$ is $\mathcal{I}_1 + \mathcal{I}_2$ -admissible.
- J is \mathcal{I} -admissible $\Rightarrow J^a$ is \mathcal{I}^a -admissible.
- J is \mathcal{I} -admissible $\Rightarrow J^{1-\frac{1}{a_1}}$ is $\mathcal{D}(\mathcal{I})$ -admissible.

Proof.

$$v_J\left(\frac{\partial x^{\alpha}}{\partial x_j}
ight) = \sum \frac{\alpha_i}{a_i} - \frac{1}{a_j} \ge 1 - \frac{1}{a_1}$$

Combining:

Proposition

A center J is \mathcal{I} -admissible if and only if $J^{(a_1-1)!}$ is $C(\mathcal{I}, a_1)$ -admissible.

- 3