
Context: families

Hironaka’s theorem resolves varieties. What can you do with families of
varieties X → B?

Theorem (ℵ-Karu, 2000)
There is a modification X ′ → B ′ which is logarithmically smooth.

Logarithmically smooth = toroidal:

A toric morphism X → B of toric varieties is a torus equivariant
morphism.

A toroidal embedding UX ⊂ X is an open embedding étale locally
isomorphic to toric T ⊂ V .

A toroidal morphism X → B of toroidal embeddings is étale locally
isomorphic to a torus equivariant dominant morphism.
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Examples of toroidal morphisms

A toric morphism X → B of toric varieties is a torus equivariant
morphism.

e.g.

SpecC[x , y , z ]/(xy − z2) → SpecC,

SpecC[x ] → SpecC[x2],

toric blowups
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Context: functoriality

Hironaka’s theorem is functorial. [Bierstone–Milman, Villamayor,...]

[ℵ-Karu 2000] is not: relied on deJong’s method.

For higher dimensional moduli one wants functoriality.

Theorem (ℵ-T-W 2020)

Given X → B there is a relatively functorial logarithmically smooth
modification X ′ → B ′.

This respects AutB X .

Does not modify log smooth fibers.
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Context: principalization

Following Hironaka, the above theorem is based on embedded
methods:

Theorem (ℵ-T-W 2020)

Given Y → B logarithmically smooth and I ⊂ OY , there is a relatively
functorial logarithmically smooth modification Y ′ → B ′ such that IOY ′ is
monomial.

This is done by a sequence of logarithmic modifications,
where in each step E becomes part of the divisor DY ′ .
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Example 1

Y = Spec k[x , u]; DY = V (u); B = Spec k ;

I = (x2, u2).

Blow up J = (x , u)

IOY ′ = O(−2E )
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Example 1/2

Y = Spec k[x , u]; DY = V (u); I = (x2, u2)

Y0 = Spec k[x , v ]; DY0 = V (v); I0 = (x2, v),

f : Y → Y0 f ∗v = u2 so I = f ∗I0
By functoriality blow up J0 so that f ∗J0 = J = (x , u).

Blow up J0 = (x ,
√
v)

Whatever J0 is, the blowup is a stack.

July 31, 2020 6 / 7



Example 1/2

Y = Spec k[x , u]; DY = V (u); I = (x2, u2)

Y0 = Spec k[x , v ]; DY0 = V (v); I0 = (x2, v),

f : Y → Y0 f ∗v = u2 so I = f ∗I0

By functoriality blow up J0 so that f ∗J0 = J = (x , u).

Blow up J0 = (x ,
√
v)

Whatever J0 is, the blowup is a stack.

July 31, 2020 6 / 7



Example 1/2

Y = Spec k[x , u]; DY = V (u); I = (x2, u2)

Y0 = Spec k[x , v ]; DY0 = V (v); I0 = (x2, v),

f : Y → Y0 f ∗v = u2 so I = f ∗I0
By functoriality blow up J0 so that f ∗J0 = J = (x , u).

Blow up J0 = (x ,
√
v)

Whatever J0 is, the blowup is a stack.

July 31, 2020 6 / 7



Example 1/2

Y = Spec k[x , u]; DY = V (u); I = (x2, u2)

Y0 = Spec k[x , v ]; DY0 = V (v); I0 = (x2, v),

f : Y → Y0 f ∗v = u2 so I = f ∗I0
By functoriality blow up J0 so that f ∗J0 = J = (x , u).

Blow up J0 = (x ,
√
v)

Whatever J0 is, the blowup is a stack.

July 31, 2020 6 / 7



Example 1/2: charts

x chart: v = v ′x2:

(x2, v) = (x2, v ′x2) = (x2)

exceptional, so monomial.

√
v chart: v = w2, x = x ′w , with ±1 action (x ′,w) 7→ (−x ′,−w):

(x2, v) = (x ′
2
w2,w2) = (w2)

exceptional, so monomial.

The schematic quotient of the above is not toroidal.
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