Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ℵ-Karu, 2000)

There is a modification $X' \rightarrow B'$ which is logarithmically smooth.

→ Ξ →

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ℵ-Karu, 2000)

There is a modification $X' \rightarrow B'$ which is logarithmically smooth.

Logarithmically smooth = toroidal:

• • = • • = •

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ℵ-Karu, 2000)

There is a modification $X' \rightarrow B'$ which is logarithmically smooth.

Logarithmically smooth = toroidal:

 A toric morphism X → B of toric varieties is a torus equivariant morphism.

• • = • • = •

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ℵ-Karu, 2000)

There is a modification $X' \rightarrow B'$ which is logarithmically smooth.

Logarithmically smooth = toroidal:

- A toric morphism X → B of toric varieties is a torus equivariant morphism.
- A toroidal embedding U_X ⊂ X is an open embedding étale locally isomorphic to toric T ⊂ V.

・ 回 ト ・ ヨ ト ・ ヨ ト

Hironaka's theorem resolves varieties. What can you do with families of varieties $X \rightarrow B$?

Theorem (ℵ-Karu, 2000)

There is a modification $X' \rightarrow B'$ which is logarithmically smooth.

Logarithmically smooth = toroidal:

- A toric morphism X → B of toric varieties is a torus equivariant morphism.
- A toroidal embedding U_X ⊂ X is an open embedding étale locally isomorphic to toric T ⊂ V.
- A toroidal morphism $X \to B$ of toroidal embeddings is étale locally isomorphic to a torus equivariant dominant morphism.

イロト イポト イヨト イヨト

Examples of toroidal morphisms

A toric morphism $X \to B$ of toric varieties is a torus equivariant morphism.

Examples of toroidal morphisms

A toric morphism $X \rightarrow B$ of toric varieties is a torus equivariant morphism.e.g.

• Spec
$$\mathbb{C}[x, y, z]/(xy - z^2) \rightarrow \text{Spec } \mathbb{C},$$

• Spec $\mathbb{C}[x] \rightarrow \text{Spec } \mathbb{C}[x^2],$

toric blowups

- Hironaka's theorem is functorial. [Bierstone-Milman, Villamayor,...]
- [ℵ-Karu 2000] is not: relied on deJong's method.

- Hironaka's theorem is functorial. [Bierstone-Milman, Villamayor,...]
- [ℵ-Karu 2000] is not: relied on deJong's method.
- For higher dimensional moduli one wants functoriality.

- Hironaka's theorem is functorial. [Bierstone-Milman, Villamayor,...]
- [ℵ-Karu 2000] is not: relied on deJong's method.
- For higher dimensional moduli one wants functoriality.

Theorem (ℵ-T-W 2020)

Given $X \to B$ there is a relatively functorial logarithmically smooth modification $X' \to B'$.

- Hironaka's theorem is functorial. [Bierstone-Milman, Villamayor,...]
- [ℵ-Karu 2000] is not: relied on deJong's method.
- For higher dimensional moduli one wants functoriality.

Theorem (ℵ-T-W 2020)

Given $X \to B$ there is a relatively functorial logarithmically smooth modification $X' \to B'$.

- This respects $\operatorname{Aut}_B X$.
- Does not modify log smooth fibers.

→ Ξ →

Context: principalization

• Following Hironaka, the above theorem is based on embedded methods:

Theorem (ℵ-T-W 2020)

Given $Y \to B$ logarithmically smooth and $\mathcal{I} \subset \mathcal{O}_Y$, there is a relatively functorial logarithmically smooth modification $Y' \to B'$ such that $\mathcal{IO}_{Y'}$ is monomial.

Context: principalization

• Following Hironaka, the above theorem is based on embedded methods:

Theorem (ℵ-T-W 2020)

Given $Y \to B$ logarithmically smooth and $\mathcal{I} \subset \mathcal{O}_Y$, there is a relatively functorial logarithmically smooth modification $Y' \to B'$ such that $\mathcal{IO}_{Y'}$ is monomial.

 This is done by a sequence of logarithmic modifications, where in each step E becomes part of the divisor D_{Y'}.

Example 1

• $Y = \operatorname{Spec} k[x, u];$ $D_Y = V(u);$ $B = \operatorname{Spec} k;$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Example 1

• Y = Spec k[x, u]; $D_Y = V(u);$ B = Spec k; $\mathcal{I} = (x^2, u^2).$

・ロト ・四ト ・ヨト ・ヨト

Example 1

Y = Spec k[x, u]; D_Y = V(u); B = Spec k; I = (x², u²).
Blow up J = (x, u)
IO_{Y'} = O(-2E)

イロト イ団ト イヨト イヨト

•
$$Y = \operatorname{Spec} k[x, u];$$
 $D_Y = V(u);$ $\mathcal{I} = (x^2, u^2)$

▲口> ▲圖> ▲屋> ▲屋>

- $Y = \operatorname{Spec} k[x, u]; \quad D_Y = V(u); \quad \mathcal{I} = (x^2, u^2)$
- $Y_0 = \operatorname{Spec} k[x, v]; \quad D_{Y_0} = V(v); \quad \mathcal{I}_0 = (x^2, v),$
- $f: Y \to Y_0$ $f^*v = u^2$ so $\mathcal{I} = f^*\mathcal{I}_0$

(日) (周) (三) (三)

E 990

- $Y = \operatorname{Spec} k[x, u]; \quad D_Y = V(u); \quad \mathcal{I} = (x^2, u^2)$
- $Y_0 = \operatorname{Spec} k[x, v]; \quad D_{Y_0} = V(v); \quad \mathcal{I}_0 = (x^2, v),$
- $f: Y \to Y_0$ $f^*v = u^2$ so $\mathcal{I} = f^*\mathcal{I}_0$
- By functoriality blow up J_0 so that $f^*J_0 = J = (x, u)$.

E Sac

(日) (周) (三) (三)

- $Y = \operatorname{Spec} k[x, u]; \quad D_Y = V(u); \quad \mathcal{I} = (x^2, u^2)$
- $Y_0 = \operatorname{Spec} k[x, v]; \quad D_{Y_0} = V(v); \quad \mathcal{I}_0 = (x^2, v),$
- $f: Y \to Y_0$ $f^*v = u^2$ so $\mathcal{I} = f^*\mathcal{I}_0$
- By functoriality blow up J_0 so that $f^*J_0 = J = (x, u)$.
- Blow up $J_0 = (x, \sqrt{v})$
- Whatever J_0 is, the blowup is a stack.

(日) (同) (三) (三)

Example 1/2: charts

• x chart:
$$v = v'x^2$$
:

$$(x^2, v) = (x^2, v'x^2) = (x^2)$$

exceptional, so monomial.

・ロト ・ 日 ト ・ ヨ ト ・

Example 1/2: charts

• x chart:
$$v = v'x^2$$
:

$$(x^2, v) = (x^2, v'x^2) = (x^2)$$

exceptional, so monomial.

•
$$\sqrt{v}$$
 chart: $v = w^2, x = x'w$, with ± 1 action $(x', w) \mapsto (-x', -w)$:
 $(x^2, v) = ({x'}^2 w^2, w^2) = (w^2)$

exceptional, so monomial.

- **4 ∃ ≻** 4

Example 1/2: charts

• x chart:
$$v = v'x^2$$
:

$$(x^2, v) = (x^2, v'x^2) = (x^2)$$

exceptional, so monomial.

•
$$\sqrt{v}$$
 chart: $v = w^2, x = x'w$, with ± 1 action $(x', w) \mapsto (-x', -w)$:
 $(x^2, v) = (x'^2 w^2, w^2) = (w^2)$

exceptional, so monomial.

• The schematic quotient of the above is not toroidal.

→ ★ 差 ▶ ★