Context: families

Hironaka's theorem resolves varieties. What can you do with families of
varieties X — B?

Theorem (N-Karu, 2000)
There is a modification X' — B’ which is logarithmically smooth. J
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Context: families

Hironaka's theorem resolves varieties. What can you do with families of
varieties X — B?

Theorem (N-Karu, 2000)
There is a modification X' — B’ which is logarithmically smooth. J

Logarithmically smooth = toroidal:

@ A toric morphism X — B of toric varieties is a torus equivariant
morphism.

@ A toroidal embedding Ux C X is an open embedding étale locally
isomorphic to toric T C V.

@ A toroidal morphism X — B of toroidal embeddings is étale locally
isomorphic to a torus equivariant dominant morphism.
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Examples of toroidal morphisms

A toric morphism X — B of toric varieties is a torus equivariant
morphism.



Examples of toroidal morphisms

A toric morphism X — B of toric varieties is a torus equivariant
morphism.e.g.

o
SpecClx, y, z]/(xy — 22) —  SpecC,

SpecC[x] — SpecC[x?],

@ toric blowups

L TR
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Context: functoriality

@ Hironaka's theorem is functorial. [Bierstone-Milman, Villamayor,...]
e [N-Karu 2000] is not: relied on deJong's method.

L AR



Context: functoriality

@ Hironaka's theorem is functorial. [Bierstone-Milman, Villamayor,...]
e [N-Karu 2000] is not: relied on deJong's method.

@ For higher dimensional moduli one wants functoriality.

L AR



L TR

Context: functoriality

@ Hironaka's theorem is functorial. [Bierstone-Milman, Villamayor,...]
e [N-Karu 2000] is not: relied on deJong's method.

@ For higher dimensional moduli one wants functoriality.

Theorem (R-T-W 2020)

Given X — B there is a relatively functorial logarithmically smooth
modification X' — B’.

3/7



Context: functoriality

@ Hironaka's theorem is functorial. [Bierstone-Milman, Villamayor,...]
e [N-Karu 2000] is not: relied on deJong's method.

@ For higher dimensional moduli one wants functoriality.

Theorem (R-T-W 2020)

Given X — B there is a relatively functorial logarithmically smooth
modification X' — B’.

@ This respects Autg X.

@ Does not modify log smooth fibers.
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Context: principalization

@ Following Hironaka, the above theorem is based on embedded
methods:

Theorem (X-T-W 2020)

Given Y — B logarithmically smooth and Z C Oy, there is a relatively

functorial logarithmically smooth modification Y' — B’ such that ZOy: is
monomial.
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Context: principalization

@ Following Hironaka, the above theorem is based on embedded
methods:

Theorem (X-T-W 2020)

Given Y — B logarithmically smooth and Z C Oy, there is a relatively

functorial logarithmically smooth modification Y' — B’ such that ZOy: is
monomial.

@ This is done by a sequence of logarithmic modifications,
where in each step E becomes part of the divisor Dy:.
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EXampIe 1

oY= SPEC k[X7 u]’

Dy = V(u),

B = Spec kv



Example 1

e Y =Speck([x,u]; Dy = V(u); B =Speck;

T = (x%,u%).



EXample 1

® Y = Specklx, u];
@ Blow up J = (x,u)

Dy = V(u);

B = Spec kv

T=(

2

X, U2)_



Example 1/2

o Y =Speck[x,u]; Dy =V(u); I=(x2u?)

o = E E = 9ace



Example 1/2

e Y = Speck|x, ul;

Dy = V(u);
o Yy =Speck[x,v]; Dy, = V(v);
o f:Y—=Yy, fv=u? so

I =

T =(x%u?)

Iy = (sz V)v
f*Zo



Example 1/2

Y =Speck[x,u]; Dy =V(u); I=(x?u?)

Yo = Speck[x,v]; Dy, = V(v); Zo=(x3v),
f:Y=Yy f'v=u?> so I=f*I

By functoriality blow up Jy so that f*Jy = J = (x, u).
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Example 1/2

Y =Speck[x,u]; Dy =V(u); I=(x?u?)

Yo = Speck[x,v]; Dy, = V(v); Zo=(x3v),
f:Y=Yy f'v=u?> so I=f*I

By functoriality blow up Jy so that f*Jy = J = (x, u).
Blow up Jo = (x,/v)

Whatever Jy is, the blowup is a stack.

July 31, 2020
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Example 1/2: charts

@ x chart: v = v/'x?

(x%,v) = (x%,v'x%) = (x?)
exceptional, so monomial.



Example 1/2: charts

@ x chart: v = v/x2:

(x2, v) = (X2, v’xz) = (x2)

exceptional, so monomial.

2 x = x'w, with +1 action (X, w) > (—x', —w):

@ /v chart: v=w
(x%,v) = (*w? w?) = (w?)

exceptional, so monomial.
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Example 1/2: charts

@ x chart: v = v/'x?

(x2, v) = (X2, v’xz) = (x2)

exceptional, so monomial.

2 x = x'w, with +1 action (X, w) > (—x', —w):

@ /v chart: v=w
(x%,v) = (*w? w?) = (w?)

exceptional, so monomial.

@ The schematic quotient of the above is not toroidal.
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