Properties of the invariant

Theorem (MC-invariance [Włodarczyk, Kollár])

Given maximal contacts x_1, x'_1 and a common extension to regular systems of parameters (x_1, x_2, \ldots, x_n) and (x'_1, x_2, \ldots, x_n) , there are étale $\pi, \pi' : \tilde{Y} \rightrightarrows Y$ such that

$$\pi^* x_1 = {\pi'}^* x_1'$$

$$\pi^* x_2 = {\pi'}^* x_2$$

$$\vdots \qquad \vdots$$

$$\pi^* C(\mathcal{I}, a_1) = {\pi'}^* C(\mathcal{I}, a_1).$$

Proposition

inv_p is functorial, well-defined, upper-semi-continuous.

A B F A B F

• $a_1 = \text{ord}, \mathcal{D}(\mathcal{I})$ are functorial for smooth maps $\Rightarrow C(\mathcal{I}, a_1)$ is functorial,

- $a_1 = \text{ord}, \mathcal{D}(\mathcal{I})$ are functorial for smooth maps $\Rightarrow C(\mathcal{I}, a_1)$ is functorial,
- so by induction $inv_p(\mathcal{I}, x_1, \dots, x_n)$ is functorial.

- 3

- $a_1 = \text{ord}, \mathcal{D}(\mathcal{I})$ are functorial for smooth maps $\Rightarrow C(\mathcal{I}, a_1)$ is functorial,
- so by induction $inv_p(\mathcal{I}, x_1, \dots, x_n)$ is functorial.
- Note that $\operatorname{inv}_p(\mathcal{I}, x_1, \dots, x_n) = \operatorname{inv}_p(\mathcal{I}, x_1, x_2 + tx_1, \dots, x_n + tx_1).$

- $a_1 = \text{ord}, \mathcal{D}(\mathcal{I})$ are functorial for smooth maps $\Rightarrow C(\mathcal{I}, a_1)$ is functorial,
- so by induction $inv_p(\mathcal{I}, x_1, \dots, x_n)$ is functorial.
- Note that $\operatorname{inv}_p(\mathcal{I}, x_1, \dots, x_n) = \operatorname{inv}_p(\mathcal{I}, x_1, x_2 + tx_1, \dots, x_n + tx_1).$
- Choosing appropriate t we have $(x'_1, x_2 + tx_1, \dots, x_n + tx_1)$ system of parameters.

- $a_1 = \text{ord}, \mathcal{D}(\mathcal{I})$ are functorial for smooth maps $\Rightarrow C(\mathcal{I}, a_1)$ is functorial,
- so by induction $inv_p(\mathcal{I}, x_1, \dots, x_n)$ is functorial.
- Note that $\operatorname{inv}_p(\mathcal{I}, x_1, \dots, x_n) = \operatorname{inv}_p(\mathcal{I}, x_1, x_2 + tx_1, \dots, x_n + tx_1).$
- Choosing appropriate t we have $(x'_1, x_2 + tx_1, \dots, x_n + tx_1)$ system of parameters.
- MC-invariance gives $\pi^* \mathcal{I}[2] = {\pi'}^* \mathcal{I}[2]'$.

A B M A B M

- $a_1 = \text{ord}, \mathcal{D}(\mathcal{I})$ are functorial for smooth maps $\Rightarrow C(\mathcal{I}, a_1)$ is functorial,
- so by induction $inv_p(\mathcal{I}, x_1, \dots, x_n)$ is functorial.
- Note that $\operatorname{inv}_p(\mathcal{I}, x_1, \dots, x_n) = \operatorname{inv}_p(\mathcal{I}, x_1, x_2 + tx_1, \dots, x_n + tx_1).$
- Choosing appropriate t we have $(x'_1, x_2 + tx_1, \dots, x_n + tx_1)$ system of parameters.
- MC-invariance gives $\pi^* \mathcal{I}[2] = {\pi'}^* \mathcal{I}[2]'$.
- By induction and fuctoriality a_2, \ldots, a_n well defined.

イロト 不得下 イヨト イヨト 二日

- $a_1 = \text{ord}, \mathcal{D}(\mathcal{I})$ are functorial for smooth maps $\Rightarrow C(\mathcal{I}, a_1)$ is functorial,
- so by induction $inv_{\rho}(\mathcal{I}, x_1, \dots, x_n)$ is functorial.
- Note that $\operatorname{inv}_p(\mathcal{I}, x_1, \dots, x_n) = \operatorname{inv}_p(\mathcal{I}, x_1, x_2 + tx_1, \dots, x_n + tx_1).$
- Choosing appropriate t we have $(x'_1, x_2 + tx_1, \dots, x_n + tx_1)$ system of parameters.
- MC-invariance gives $\pi^* \mathcal{I}[2] = {\pi'}^* \mathcal{I}[2]'$.
- By induction and fuctoriality a_2, \ldots, a_n well defined.
- (a_2, \ldots, a_n) USC on $V(x_1)$, containing the maximal locus of a_1 ,
- so inv_p USC.

イロト 不得下 イヨト イヨト 二日