The invariant of the coefficient ideal drops

Theorem

 $C(\mathcal{I}, a_1)\mathcal{O}_{Y'} = E^{\ell'}C' \text{ with } \operatorname{inv}_{p'}C' < \operatorname{inv}_p(C(\mathcal{I}, a_1)).$

- 3

The invariant of the coefficient ideal drops

Theorem

 $C(\mathcal{I}, a_1)\mathcal{O}_{Y'} = E^{\ell'}C' \text{ with } \operatorname{inv}_{p'}C' < \operatorname{inv}_p(C(\mathcal{I}, a_1)).$

- Use formal decomposition $C(\mathcal{I}, a_1) = (x_1^{a_1!}) + (x_1^{a_1!-1})\tilde{\mathcal{G}}_1 + \dots + (x_1)\tilde{\mathcal{G}}_{a_1!-1} + \tilde{\mathcal{G}}_{a_1!}.$
- If $H = V(x_1)$ then the proper transform $H' \to H$ is, up to rescaling, the blowing up of $J_H = (x_2^{a_2}, \dots, x_k^{a_k})$.
- In the x₁-chart the term $(x_1^{a_1!})$ becomes principal, so $inv_{p'}(C') = 0$.
- In other charts the term $(x_1^{a_1!})$ transforms to $(x_1'^{a_1!})$.
- So ord(C') ≤ a₁!, and we may assume equality, and x'₁ is maximal contact.
- Induction gives inv_p((((G_{a1!})_H)') < (a₁ − 1)!(a₂,..., a_k), so together the result follows.

イロト 不得下 イヨト イヨト 二日

The invariant drops

Theorem

 $\mathcal{IO}_{Y'} = E^{\ell} \mathcal{I}' \text{ with } \operatorname{inv}_{p'} \mathcal{I}' < \operatorname{inv}_{p}(\mathcal{I}).$

3

イロト イポト イヨト イヨト

The invariant drops

Theorem

$\mathcal{IO}_{Y'} = E^{\ell} \mathcal{I}' \text{ with } \operatorname{inv}_{p'} \mathcal{I}' < \operatorname{inv}_{p}(\mathcal{I}).$

- One relies on inclusions [BM]: $\mathcal{I}'^{(a_1-1)!} \subset C' \subset C(\mathcal{I}', a_1).$
- Hence ord I' ≤ a₁, and we may assume equality with x₁' a maximal contact.
- Now $\operatorname{inv}_{p'}(\mathcal{I}'^{(a_1-1)!}) \geq \operatorname{inv}_{p'}(\mathcal{C}') \geq \operatorname{inv}_{p'}(\mathcal{C}(\mathcal{I}',a_1)).$
- By unique admissibility $\operatorname{inv}_{p'}(\mathcal{I}'^{(a_1-1)!}) = \operatorname{inv}_{p'}(C(\mathcal{I}', a_1))$ giving equalities throughout.
- By the previous theorem $\operatorname{inv}_{p'}\mathcal{I}' < \operatorname{inv}_p(\mathcal{I}).$