Formal decomposition

Following Encinas–Villamayor, consider the algebra $\mathcal{G} = \oplus \mathcal{G}_i$ generated by $\mathcal{D}^j(\mathcal{I})$ in degree $a_1 - j$, for $0 \le j \le a_1 - 1$. We have $\mathcal{G}_{a_1!} = \mathcal{C}(\mathcal{I}, a_1)$. Writing formally $Y = \text{Spec } k[\![x_1, \dots, x_n]\!]$, with $H = V(x_1)$ maximal contact, we consider $\pi : Y \to H$. Let $\tilde{\mathcal{G}}_i = \pi^*(\mathcal{G}_i|_H)$.

Proposition (Formal decomposition)

$$C(\mathcal{I}, a_1) = (x_1^{a_1!}) + (x_1^{a_1!-1})\tilde{\mathcal{G}}_1 + \dots + (x_1)\tilde{\mathcal{G}}_{a_1!-1} + \tilde{\mathcal{G}}_{a_1!}.$$

This is proven by decomposing into eigenspaces for $x_1 \frac{\partial}{\partial x_1}$.

Proposition (
$$\mathcal{D}$$
-balanced property (Kollár))
 $\tilde{\mathcal{G}}_{a_{1}!-j}^{a_{1}!} \subset \tilde{\mathcal{G}}_{a_{1}!}^{a_{1}!-j}$.

イロト 不得 トイヨト イヨト 二日

The center is admissible

Theorem

 $J_{\mathcal{I}}$ is \mathcal{I} -admissible.

- This is equivalent to $J^{(a_1-1)!}$ is $C(\mathcal{I}, a_1)$ -admissible.
- One checks that $J^{(a_1-1)!}$ is admissible for each term in the formal decomposition.
- Hence it is admissible.

()

The unique admissibility theorem

Theorem

 $J_{\mathcal{I}} = (x_1^{a_1}, \dots, x_k^{a_k})$ is the unique admissible center of maximal invariant.

- First if J' = (x'₁^{b₁},...,x_m'^{a_m}) is admissible one sees that b₁ ≤ a₁, otherwise v_J(f) < 1 for f ∈ I of order a₁.
- Assume now $(b_1, ..., b_m) > (a_1 ..., a_k)$. So $a_1 = b_1$.
- With a bit more work one may assume $J' = (x_1^{a_1}, x_2'^{b_2}, \dots, x_m'^{b_m})$, with $x'_i \in k[\![x_2, \dots, x_n]\!]$.
- Consider the formal completion. Induction gives $(a_1 1)!(a_2, \ldots, a_k)$ is the maximal invariant of $\tilde{\mathcal{G}}_{a_1}!$, with unique center $(x_2^{a_2}, \ldots, x_k^{a_k})^{(a_1-1)!}$.
- On the other hand $(x'_1{}^{a_1}, x'_2{}^{b_2}, \ldots, x_m{}'{}^{b_m}){}^{(a_1-1)!} \leq v(\tilde{\mathcal{G}}_{a_1!})$, giving equality throughout.

イロト 不得下 イヨト イヨト 二日