Resolution by weighted blowing up

Dan Abramovich, Brown University Joint work with Michael Tëmkin and Jarosław Włodarczyk

Also parallel work by M. McQuillan with G. Marzo Rational points on irrational varieties

To resolve a singular curve C

- (1) find a singular point $x \in C$,
- (2) blow it up.

3. 3

To resolve a singular curve C

- (1) find a singular point $x \in C$,
- (2) blow it up.

Fact

p_a gets smaller.

A B < A B </p>

3

To resolve a singular surface S one wants to

- (1) find the worst singular locus $C \in S$,
- (2) C is smooth blow it up.

To resolve a singular surface S one wants to

- (1) find the worst singular locus $C \in S$,
- (2) C is smooth blow it up.

Fact

This in general does not get better.

Consider $S = V(x^2 - y^2 z)$

イロト 不得 トイヨト イヨト 二日

Consider $S = V(x^2 - y^2 z)$ (image by Eleonore Faber).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

4 / 18

Consider $S = V(x^2 - y^2 z)$ (image by Eleonore Faber).

(1) The worst singularity is the origin.

(2) In the z chart we get $x = x_3 z$, $y = y_3 z$, giving $x_3^2 z^2 - y_3^2 z^3 = 0$, or $z^2 (x_3^2 - y_3^2 z) = 0$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Consider $S = V(x^2 - y^2 z)$ (image by Eleonore Faber).

- (1) The worst singularity is the origin.
- (2) In the z chart we get

$$x = x_3 z$$
, $y = y_3 z$, giving

 $x_3^2 z^2 - y_3^2 z^3 = 0$, or $z^2 (x_3^2 - y_3^2 z) = 0$.

The first term is exceptional, the second is the same as S.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @

Consider $S = V(x^2 - y^2 z)$ (image by Eleonore Faber).

(1) The worst singularity is the origin.

(2) In the z chart we get

$$x = x_3 z, y = y_3 z,$$
 giving

 $x_3^2 z^2 - y_3^2 z^3 = 0$, or $z^2 (x_3^2 - y_3^2 z) = 0$.

The first term is exceptional, the second is the same as S.

Classical solution:

- (a) Remember exceptional divisors (this is OK)
- (b) Remember their history (this is a pain)

Main result

Nevertheless:

Theorem (\aleph -T-W, MM, "weighted Hironaka", characteristic 0) There is a procedure F associating to a singular subvariety $X \subset Y$ embedded with pure codimension c in a smooth variety Y, a center \overline{J} with blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\max(X') < \max(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n smooth.

超す イヨト イヨト ニヨ

Main result

Nevertheless:

Theorem (ℵ-T-W, MM, "weighted Hironaka", characteristic 0)

There is a procedure F associating to a singular subvariety $X \subset Y$ embedded with pure codimension c in a smooth variety Y, a center \overline{J} with blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\operatorname{maxinv}(X') < \operatorname{maxinv}(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F^{\circ n}(X \subset Y)$ of F has X_n smooth.

Here

procedure

means

a functor for smooth surjective morphisms:

if $f: Y_1 \twoheadrightarrow Y$ smooth then $J_1 = f^{-1}J$ and $Y'_1 = Y_1 \times_Y Y'$.

3 × 4 3 ×

Preview on invariants

For $p \in X$ we define

$$\operatorname{inv}_p(X) \in \Gamma \subset \quad \mathbb{Q}_{\geq 0}^{\leq n},$$

with Γ well-ordered, and show

Proposition

- it is lexicographically upper-semi-continuous, and
- $p \in X$ is smooth $\Leftrightarrow \operatorname{inv}_p(X) = \min \Gamma$.

We define $maxinv(X) = max_p inv_p(X)$.

A B M A B M

Preview on invariants

For $p \in X$ we define

$$\operatorname{inv}_p(X) \in \Gamma \subset \quad \mathbb{Q}_{\geq 0}^{\leq n},$$

with Γ well-ordered, and show

Proposition

- it is lexicographically upper-semi-continuous, and
- $p \in X$ is smooth $\Leftrightarrow \operatorname{inv}_p(X) = \min \Gamma$.

We define $maxinv(X) = max_p inv_p(X)$.

Example

 $inv_p(V(x^2 - y^2z)) = (2, 3, 3)$

御下 不注下 不注下 二注

Preview on invariants

For $p \in X$ we define

$$\operatorname{inv}_p(X) \in \Gamma \subset \quad \mathbb{Q}_{\geq 0}^{\leq n},$$

with Γ well-ordered, and show

Proposition

- it is lexicographically upper-semi-continuous, and
- $p \in X$ is smooth $\Leftrightarrow \operatorname{inv}_p(X) = \min \Gamma$.

We define $maxinv(X) = max_p inv_p(X)$.

Example

$$inv_p(V(x^2 - y^2z)) = (2, 3, 3)$$

Remark

These invariants have been in our arsenal for ages.

Abramovich

Columbia, September 13, 2019 6 / 18

3

If $\operatorname{inv}_p(X) = \operatorname{maxinv}(X) = (a_1, \dots, a_k)$ then, locally at p

$$J=(x_1^{a_1},\ldots,x_k^{a_k}).$$

If $\operatorname{inv}_p(X) = \operatorname{maxinv}(X) = (a_1, \ldots, a_k)$ then, locally at p

$$J=(x_1^{a_1},\ldots,x_k^{a_k}).$$

Write $(a_1, \ldots, a_k) = \ell(1/w_1, \ldots, 1/w_k)$ with $w_i, \ell \in \mathbb{N}$ and $gcd(w_1, \ldots, w_k) = 1$. We set

$$\bar{J} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k}).$$

御下 米吉下 米吉下 二吉

If $\operatorname{inv}_p(X) = \operatorname{maxinv}(X) = (a_1, \dots, a_k)$ then, locally at p

$$J=(x_1^{a_1},\ldots,x_k^{a_k}).$$

Write $(a_1, \ldots, a_k) = \ell(1/w_1, \ldots, 1/w_k)$ with $w_i, \ell \in \mathbb{N}$ and $gcd(w_1, \ldots, w_k) = 1$. We set

$$\bar{J} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k}).$$

Example

For
$$X = V(x^2 - y^2 z)$$
 we have $J = (x^2, y^3, z^3)$; $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$.

米間 とくきとくきとうき

If $\operatorname{inv}_p(X) = \operatorname{maxinv}(X) = (a_1, \dots, a_k)$ then, locally at p

$$J=(x_1^{a_1},\ldots,x_k^{a_k}).$$

Write $(a_1, \ldots, a_k) = \ell(1/w_1, \ldots, 1/w_k)$ with $w_i, \ell \in \mathbb{N}$ and $gcd(w_1, \ldots, w_k) = 1$. We set

$$\bar{J} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k}).$$

Example

For
$$X = V(x^2 - y^2 z)$$
 we have $J = (x^2, y^3, z^3)$; $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$.

Remark

J has been staring in our face for a while.

Abramovich

The blowing up $Y' \to Y$ makes $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly:

• The z chart has $x = w^3 x_3, y = w^2 y_3, z = w^2$ with chart

$$Y' = [\operatorname{Spec} \mathbb{C}[x_3, y_3, w] / (\pm 1)],$$

with action of (± 1) given by $(x_3, y_3, w) \mapsto (-x_3, y_3, -w)$.

• • = • • = • =

The blowing up $Y' \to Y$ makes $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly:

• The z chart has $x = w^3 x_3, y = w^2 y_3, z = w^2$ with chart

$$Y' = [\operatorname{Spec} \mathbb{C}[x_3, y_3, w] / (\pm 1)],$$

with action of (± 1) given by $(x_3, y_3, w) \mapsto (-x_3, y_3, -w)$. The transformed equation is

$$w^{6}(x_{3}^{2}-y_{3}^{2})$$

向下 イヨト イヨト ニヨ

The blowing up $Y' \to Y$ makes $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly:

• The z chart has $x = w^3 x_3, y = w^2 y_3, z = w^2$ with chart

$$Y' = [\operatorname{Spec} \mathbb{C}[x_3, y_3, w] / (\pm 1)],$$

with action of (± 1) given by $(x_3, y_3, w) \mapsto (-x_3, y_3, -w)$. The transformed equation is

$$w^6(x_3^2-y_3^2)$$

and the invariant of the proper transform $(x_3^2 - y_3^2)$ is (2,2) < (2,3,3).

向下 イヨト イヨト ニヨ

The blowing up $Y' \to Y$ makes $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly:

• The z chart has $x = w^3 x_3, y = w^2 y_3, z = w^2$ with chart

$$Y' = [\operatorname{Spec} \mathbb{C}[x_3, y_3, w] / (\pm 1)],$$

with action of (± 1) given by $(x_3, y_3, w) \mapsto (-x_3, y_3, -w)$. The transformed equation is

$$w^6(x_3^2-y_3^2)$$

and the invariant of the proper transform $(x_3^2 - y_3^2)$ is (2,2) < (2,3,3).

In fact, X has begged to be blown up like this all along.

向下 イヨト イヨト ニヨ

Definition of $Y' \to Y$

Let $ar{J}=(x_1^{1/w_1},\ldots,x_k^{1/w_k}).$ Define the graded algebra $\mathcal{A}_{ar{I}}\ \subset\ \mathcal{O}_Y[\mathcal{T}]$

as the integral closure of the image of

$$\mathcal{O}_{Y}[Y_{1},\ldots,Y_{n}]\longrightarrow \mathcal{O}_{Y}[T]$$
$$Y_{i} \longmapsto x_{i}T^{w_{i}}.$$

- ▲ 畳 ▶ ▲ 置 ▶ → 置 ■ - の Q @

Definition of $Y' \to Y$

Let $ar{J}=(x_1^{1/w_1},\ldots,x_k^{1/w_k}).$ Define the graded algebra $\mathcal{A}_{ar{J}}\ \subset\ \mathcal{O}_Y[\mathcal{T}]$

as the integral closure of the image of

$$\mathcal{O}_{Y}[Y_{1},\ldots,Y_{n}] \longrightarrow \mathcal{O}_{Y}[T]$$
$$Y_{i} \longmapsto x_{i}T^{w_{i}}.$$

Let

$$S_0 \subset \operatorname{Spec}_Y \mathcal{A}_{\bar{J}}, \quad S_0 = V((\mathcal{A}_{\bar{J}})_{>0}).$$

Then

$$Bl_{\overline{J}}(Y) := \mathcal{P}roj_{Y}\mathcal{A}_{\overline{J}} := [(\operatorname{Spec} \mathcal{A}_{\overline{J}} \smallsetminus S_{0}) / \mathbb{G}_{m}].$$

▲■▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Description of $Y' \rightarrow Y$

• Charts: The x₁-chart is

$$\begin{split} & [\text{Spec } k[u, x'_{2}, \dots, x'_{n}] \ / \ \mu_{w_{1}}], \\ & \text{with } x_{1} = u^{w_{1}} \text{ and } x_{i} = u^{w_{i}} x'_{i} \text{ for } 2 \leq i \leq k, \text{ and induced action:} \\ & (u, x'_{2}, \dots, x'_{n}) \ \mapsto \ (\zeta u, \ \zeta^{-w_{2}} x'_{2}, \dots, \ \zeta^{-w_{k}} x'_{k}, \ x'_{k+1}, \dots, x'_{n}). \end{split}$$

10 18 Description of $Y' \rightarrow Y$

• Charts: The x₁-chart is

$$[\text{Spec } k[u, x'_{2}, \dots, x'_{n}] / \mu_{w_{1}}],$$

with $x_{1} = u^{w_{1}}$ and $x_{i} = u^{w_{i}}x'_{i}$ for $2 \le i \le k$, and induced action:
 $(u, x'_{2}, \dots, x'_{n}) \mapsto (\zeta u, \zeta^{-w_{2}}x'_{2}, \dots, \zeta^{-w_{k}}x'_{k}, x'_{k+1}, \dots, x'_{n}).$

• Toric stack: Y' corresponds to the star subdivision $\Sigma := v_{\bar{J}} \star \sigma$ along

$$v_{\bar{J}} = (w_1,\ldots,w_k,0,\ldots,0),$$

with a natural toric stack structure.

(1) Consider $X = V(x^5 + x^3y^3 + y^8)$ at p = (0, 0); write $\mathcal{I} := \mathcal{I}_X$.

- Define $a_1 = \operatorname{ord}_p \mathcal{I} = 5$,
- and x_1 = any variable appearing in a degree- a_1 term = x.

• So
$$J_{\mathcal{I}} = (x^5, y^{\star}).$$

(1) Consider $X = V(x^5 + x^3y^3 + y^8)$ at p = (0, 0); write $\mathcal{I} := \mathcal{I}_X$.

- Define $a_1 = \operatorname{ord}_p \mathcal{I} = 5$,
- and x_1 = any variable appearing in a degree- a_1 term = x.
- So $J_{\mathcal{I}} = (x^5, y^{\star}).$
- ► To balance x⁵ with x³y³ we need x² and y³ to have the same weight, so x⁵ and y^{15/2} have the same weight.

(1) Consider $X = V(x^5 + x^3y^3 + y^8)$ at p = (0, 0); write $\mathcal{I} := \mathcal{I}_X$.

- Define $a_1 = \operatorname{ord}_p \mathcal{I} = 5$,
- and x_1 = any variable appearing in a degree- a_1 term = x.
- So $J_{\mathcal{I}} = (x^5, y^*)$.
- ► To balance x⁵ with x³y³ we need x² and y³ to have the same weight, so x⁵ and y^{15/2} have the same weight.
- ► Since 15/2 < 8 we use</p>

$$J_{\mathcal{I}} = (x^5, y^{15/2})$$
 and $\bar{J}_{\mathcal{I}} = (x^{1/3}, y^{1/2}).$

(1) Consider $X = V(x^5 + x^3y^3 + y^8)$ at p = (0, 0); write $\mathcal{I} := \mathcal{I}_X$.

- Define $a_1 = \operatorname{ord}_p \mathcal{I} = 5$,
- and x_1 = any variable appearing in a degree- a_1 term = x.
- So $J_{\mathcal{I}} = (x^5, y^*)$.
- ► To balance x⁵ with x³y³ we need x² and y³ to have the same weight, so x⁵ and y^{15/2} have the same weight.
- ► Since 15/2 < 8 we use</p>

$$J_{\mathcal{I}} = (x^5, y^{15/2})$$
 and $\bar{J}_{\mathcal{I}} = (x^{1/3}, y^{1/2}).$

(2) If instead we took $X = V(x^5 + x^3y^3 + y^7)$, then since 7 < 15/2 we would use

$$J_{\mathcal{I}} = (x^5, y^7)$$
 and $ar{J}_{\mathcal{I}} = (x^{1/7}, y^{1/5}).$

Examples: describing the blowing up

- (1) Considering $X = V(x^5 + x^3y^3 + y^8)$ at p = (0, 0),
 - ▶ the x-chart has $x = u^3, y = u^2 y_1$ with μ_3 -action, and equation

$$u^{15}(1+y_1^3+uy_1^8)$$

with smooth proper transform.

Examples: describing the blowing up

- (1) Considering $X = V(x^5 + x^3y^3 + y^8)$ at p = (0, 0),
 - ▶ the x-chart has $x = u^3, y = u^2 y_1$ with μ_3 -action, and equation

$$u^{15}(1+y_1^3+uy_1^8)$$

with smooth proper transform.

• The y-chart has $y = v^2, x = v^3 x_1$ with μ_2 -action, and equation

$$v^{15}(x_1^5 + x_1^3 + u)$$

with smooth proper transform.

Examples: describing the blowing up

- (1) Considering $X = V(x^5 + x^3y^3 + y^8)$ at p = (0, 0),
 - ▶ the x-chart has $x = u^3, y = u^2 y_1$ with μ_3 -action, and equation

$$u^{15}(1+y_1^3+uy_1^8)$$

with smooth proper transform.

► The y-chart has $y = v^2$, $x = v^3 x_1$ with μ_2 -action, and equation $v^{15}(x_1^5 + x_1^3 + u)$

with smooth proper transform.

(2) Considering $X = V(x^5 + x^3y^3 + y^7)$ at p = (0, 0),

▶ the x-chart has $x = u^7, y = u^5 y_1$ with μ_7 -action, and equation

$$u^{35}(1+uy_1^3+y_1^7)$$

with smooth proper transform.

• The y-chart has $y = v^5, x = v^7 x_1$ with μ_5 -action, and equation

$$v^{35}(x_1^5 + ux_1^3 + 1)$$

with smooth proper transform.

Coefficient ideals

We must restrict to $x_1 = 0$ the data of all

 $\mathcal{I}, \mathcal{DI}, \ldots, \mathcal{D}^{a_1-1}\mathcal{I}$

with corresponding weights

 $a_1, a_1 - 1, \ldots, 1.$

Columbia, September 13, 2019

13 / 18

Coefficient ideals

We must restrict to $x_1 = 0$ the data of all

 $\mathcal{I}, \mathcal{DI}, \ldots, \mathcal{D}^{a_1-1}\mathcal{I}$

with corresponding weights

$$a_1, a_1 - 1, \ldots, 1.$$

We combine these in

$$C(\mathcal{I}, a_1) := \sum f(\mathcal{I}, \mathcal{DI}, \dots, \mathcal{D}^{a_1-1}\mathcal{I}),$$

where f runs over monomials $f = t_0^{b_0} \cdots t_{a_1-1}^{b_{a_1-1}}$ with weights

$$\sum b_1(a_1-i) \geq a_1!.$$

Define $\mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0}$.

Abramovich

Definition

Let $a_1 = \operatorname{ord}_p \mathcal{I}$, with x_1 a regular element in $\mathcal{D}^{a_1-1}\mathcal{I}$ - a maximal contact.

Definition

Let $a_1 = \operatorname{ord}_p \mathcal{I}$, with x_1 a regular element in $\mathcal{D}^{a_1-1}\mathcal{I}$ - a maximal contact. Suppose $\mathcal{I}[2]$ has invariant $\operatorname{inv}_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k .

Definition

Let $a_1 = \operatorname{ord}_p \mathcal{I}$, with x_1 a regular element in $\mathcal{D}^{a_1-1}\mathcal{I}$ - a maximal contact. Suppose $\mathcal{I}[2]$ has invariant $\operatorname{inv}_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k . Set

$$\mathsf{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\mathsf{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right)$$

and

$$J_{\mathcal{I}} = (x_1^{a_1}, \ldots, x_k^{a_k}).$$

Definition

Let $a_1 = \operatorname{ord}_p \mathcal{I}$, with x_1 a regular element in $\mathcal{D}^{a_1-1}\mathcal{I}$ - a maximal contact. Suppose $\mathcal{I}[2]$ has invariant $\operatorname{inv}_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k . Set

$$\mathsf{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\mathsf{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right)$$

and

$$J_{\mathcal{I}} = (x_1^{a_1}, \ldots, x_k^{a_k}).$$

Example

(1) for
$$X = V(x^5 + x^3y^3 + y^8)$$
 we have $\mathcal{I}[2] = (y)^{180}$, so $J_{\mathcal{I}} = (x^5, y^{180/24}) = (x^5, y^{15/2}).$

14 / 18

Definition

Let $a_1 = \operatorname{ord}_p \mathcal{I}$, with x_1 a regular element in $\mathcal{D}^{a_1-1}\mathcal{I}$ - a maximal contact. Suppose $\mathcal{I}[2]$ has invariant $\operatorname{inv}_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k . Set

$$\mathsf{inv}_p(\mathcal{I}) = (a_1, \dots, a_k) := \left(a_1, \frac{\mathsf{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!}\right)$$

and

$$J_{\mathcal{I}} = (x_1^{a_1}, \ldots, x_k^{a_k}).$$

Example

(1) for
$$X = V(x^5 + x^3y^3 + y^8)$$
 we have $\mathcal{I}[2] = (y)^{180}$, so
 $J_{\mathcal{I}} = (x^5, y^{180/24}) = (x^5, y^{15/2}).$
(2) for $X = V(x^5 + x^3y^3 + y^7)$ we have $\mathcal{I}[2] = (y)^{7\cdot 24}$, so $J_{\mathcal{I}} = (x^5, y^7).$

14 /

What is J?

Definition

Consider the Zariski-Riemann space $\mathbf{ZR}(Y)$ with its sheaf of ordered groups Γ , and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

• A valuative Q-ideal is

 $\gamma \in H^0\left(\mathsf{ZR}(Y), (\Gamma\otimes \mathbb{Q})_{\geq 0}\right)\right).$

What is J?

Definition

Consider the Zariski-Riemann space $\mathbf{ZR}(Y)$ with its sheaf of ordered groups Γ , and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

• A valuative Q-ideal is

 $\gamma \in H^0\left(\mathsf{ZR}(Y), (\Gamma\otimes \mathbb{Q})_{\geq 0}\right)
ight).$

•
$$\mathcal{I}_{\gamma} := \{ f \in \mathcal{O}_{Y} : v(f) \ge \gamma_{v} \forall v \}.$$

• $v(\mathcal{I}) := (\min v(f) : f \in \mathcal{I})_{v}.$

What is J?

Definition

Consider the Zariski-Riemann space $\mathbf{ZR}(Y)$ with its sheaf of ordered groups Γ , and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

• A valuative Q-ideal is

 $\gamma \in H^0\left(\mathsf{ZR}(Y), (\Gamma\otimes \mathbb{Q})_{\geq 0}\right)
ight).$

•
$$\mathcal{I}_{\gamma} := \{ f \in \mathcal{O}_{Y} : v(f) \ge \gamma_{v} \forall v \}.$$

• $v(\mathcal{I}) := (\min v(f) : f \in \mathcal{I})_{v}.$

A center is in particular a valuative \mathbb{Q} -ideal.

Admissibility and coefficient ideals

Definition

J is \mathcal{I} -admissible if $v(J) \leq v(\mathcal{I})$.

Columbia, September 13, 2019

16 18

Admissibility and coefficient ideals

Definition

J is \mathcal{I} -admissible if $v(J) \leq v(\mathcal{I})$.

Lemma

This is equivalent to $\mathcal{IO}_{Y'} = E^{\ell}\mathcal{I}'$, with $J = \overline{J}^{\ell}$ and \mathcal{I}' an ideal.

Indeed, on Y' the center J becomes E^{ℓ} , in particular principal.

Admissibility and coefficient ideals

Definition

J is \mathcal{I} -admissible if $v(J) \leq v(\mathcal{I})$.

Lemma

This is equivalent to $\mathcal{IO}_{Y'} = E^{\ell}\mathcal{I}'$, with $J = \overline{J}^{\ell}$ and \mathcal{I}' an ideal.

Indeed, on Y' the center J becomes E^{ℓ} , in particular principal.

Proposition

J is \mathcal{I} -admissible if and only if $J^{(a_1-1)!}$ is $C(\mathcal{I}, a_1)$ - admissible.

The key theorems

Theorem

The invariant is well-defined, USC, functorial.

Theorem

The center is well-defined.

The key theorems

Theorem

The invariant is well-defined, USC, functorial.

Theorem

The center is well-defined.

Theorem

 $J_{\mathcal{I}}$ is \mathcal{I} -admissible.

Theorem

$$C(\mathcal{I}, a_1)\mathcal{O}_{Y'} = E^{\ell'}C' \text{ with } \operatorname{inv}_{p'}C' < \operatorname{inv}_p(C(\mathcal{I}, a_1)).$$

The key theorems

Theorem

The invariant is well-defined, USC, functorial.

Theorem

The center is well-defined.

Theorem

 $J_{\mathcal{I}}$ is \mathcal{I} -admissible.

Theorem

$$C(\mathcal{I}, a_1)\mathcal{O}_{Y'} = E^{\ell'}C' \text{ with } \operatorname{inv}_{p'}C' < \operatorname{inv}_p(C(\mathcal{I}, a_1)).$$

Theorem

$$\mathcal{IO}_{Y'} = E^{\ell}\mathcal{I}' \text{ with } \operatorname{inv}_{p'}\mathcal{I}' < \operatorname{inv}_{p}(\mathcal{I}).$$

Thank you for your attention

Columbia, September 13, 2019

18 / 18