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Abstract. We provide a procedure for resolving, in characteristic 0, singu-

larities of a variety X embedded in a smooth variety Y by repeatedly blowing
up the worst singularities, in the sense of stack-theoretic weighted blowings

up. No history, no exceptional divisors, and no logarithmic structures are

necessary to carry this out.
A similar result was discovered independently by Marzo and McQuillan

[MM19].

1. Introduction

1.1. Statement of result. We consider smooth variety Y of pure dimension n
of finite type over a field k of charactertistic 0, and reduced closed subscheme
X ⊂ Y of pure codimension c; or more generally a closed substack X of a smooth
Deligne–Mumford stack Y . Our goal is to resolve singularities of X embedded in
Y , revisiting Hironaka’s [Hir64, Main Theorem I].

Pairs X ⊂ Y of possibly different dimensions form a category by considering
surjective morphisms (X1 ⊂ Y1)→ (X2 ⊂ Y2) of pairs where f : Y1 → Y2 is smooth
and X1 = X2×Y2

Y1 is the pullback of X2. We in fact define a resolution functor on
this category; it is functorial for all smooth morphisms, whether or not surjective,
when interpreted appropriately. This follows principles of [W lo05, Kol07, BM08].

For a geometric point p ∈ |X| we defined in [ATW17, §2.12.4] an upper-semi-
continuous function, the lexicographic order invariant, which we rescale here and
write as:

invp(X) = (a1(p), . . . , ak(p)) ∈ Q≤n≥0 :=
⊔
k≤n

Qk≥0,

ordered lexicographically and taking values in a well-ordered subset. It detects sin-
gularities: the invariant is the sequence invp(X) = (1, . . . , 1) of length c if and only
if p ∈ X is smooth, and otherwise it is bigger. Our invariant invx is compatible with
smooth morphisms of pairs, whether or not surjective: invx(X1) = invf(x)(X2).

We define
maxinv(X) = max

p∈|X|
invp(X).

This is compatible with surjective morphisms of pairs.
In Section 3 we introduce stack-theoretic weighted blowings up Y ′ → Y along

centers locally of the form J̄ = (x
1/w1

1 , . . . x
1/wk

k ), where(`/w1, . . . , `/wk) = maxinv(X)
for positive integers `, wi, and x1, . . . xn is a carefully chosen regular system of pa-
rameters.

Date: April 24, 2019.
This research is supported by BSF grant 2014365, ERC Consolidator Grant 770922 - BirNonAr-

chGeom, and NSF grant DMS-1759514.

1



2 D. ABRAMOVICH, M. TEMKIN, AND J. W LODARCZYK

The aim of this paper is to prove the following:

Theorem 1.1.1. There is a functor F associating to a singular pair X ⊂ Y a
center J̄ with blowing up Y ′ → Y and proper transform F (X ⊂ Y ) = (X ′ ⊂ Y ′),
such that maxinv(X ′) < maxinv(X). In particular there is an integer n so that the
iterated application (Xn ⊂ Yn) := F ◦n(X ⊂ Y ) of F has Xn smooth.

The stabilized functor F ◦∞(X ⊂ Y ) is functorial for all smooth morphisms of
pairs, whether or not surjective.

We again mention that Theorem 1.1.1 was discovered independently by Marzo
and McQuillan [MM19]. We thank Johannes Nicaise for bringing that to our at-
tention.

1.2. Invariants and parameters. The notation for the present invariant invp(I)
in [ATW17] was a1 · invIX ,a1(p), and extends to arbitrary ideal sheaves. Here it is
applied solely when Y is smooth with trivial logarithmic structure.

This invariant is closely related to invariants developed in earlier papers on res-
olution of singularities, in particular W lodarczyk’s [W lo05] and Bierstone and Mil-
man’s [BM97]. The local parameters x1, . . . , xk in the definition of J were already
inrtoduced in [BM97, EV03, W lo05, ATW17] as a sequence of iterated hypersurfaces
of maximal contact for appropriate coefficient ideals, see Section 4.3. In particular
each application of the resolution-step functor F is explicitly computable.

In earlier work the ideal (x1, . . . , xk) was used to locally define the unique center
of blowing up satisfying appropriate admissibility and functoriality properties for
resolution using smooth blowings up. A central observation here is that the stack-

theoretic weighted blowing up of (x
1/w1

1 , . . . x
1/wk

k ) is also functorially associated to
X ⊂ Y , see Theorem 4.7.1.

As we recall below, in general, after blowing up the reduced ideal (x1, . . . , xk),
the invariant does not drop, and may increase. Earlier work replaced this invariant
by an invariant including data of exceptional divisors and their history, or more
recently, logarithmic structures. Another central observation here is that, with the
use of weighted blowings up, no history, no exceptional divisors, and no logarithmic
structures are necessary.

The present treatment requires the theory of Deligne–Mumford stacks. A care-
ful application of Bergh’s Destackification Theorem [Ber17, Theorem 1.2] or more
directly its non-abelian generalization [BR19] allows one to replace Xn ⊂ Yn by a
smooth embedded scheme X ′ ⊂ Y ′ projective over X ⊂ Y .

The present treatment does not address logarithmic resolutions, a critical re-
quirement of birational geometry. We will treat the necessary modifications in a
follow-up paper.

We provide a proof of the theorem based on existing theory of resolution of
singularities. We hope this will make it transparent to those familiar with the
theory.

We also provide a direct construction, which may be more convincing to bira-
tional geometers not familiar with existing work. As we see below, the blowing up
Y ′ → Y is obtained as the stack-theoretic blowing up ProjY (A), where the graded
algebra A is canonically obtained from IX using differential operators.

In future work (perhaps future revisions of this manuscript) we aim to reset
the present treatment in the appropriate generality of qe schemes, and apply it to
logarithmic schemes and families of schemes.
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1.3. Example: Whitney’s umbrella revisited with weighted blowings up.

1.3.1. Blowing up without weights. It is well-known that with smooth blowings
up Theorem 1.1.1 is impossible, see [Kol07, Claim 3.6.3]. Consider the Whitney
umbrella x2 = zy2. The origin seems to be the most singular point, and indeed,
in characteristic 0, the theory of maximal contact and coefficient ideals leads to
the center {x = y = z = 0}, but its blowing up leads to the Whitney umbrella
occurring again on the z-chart: writing x = x1z and y = y1z we get, after clearing
out z2, the equation x2

1 = zy2
1 .

Of course the Whitney umbrella can be resolved in one step by blowing up the
line x = y = 0, but in characteristic 6= 2 this does not fit in any known embedded
resolution algorithm.

A worse scenario appears with the singularity x2 + y2 + zmtm = 0, where after
blowing up the origin the “worse” singularity x2

1 + y2
1 + z2m−2tm1 = 0 appears in

the z-chart.

1.3.2. Weighted blowing up. A birational geometer knows that, in characteristic
6= 2, the Whitney umbrella x2 = y2z asks to be resolved starting by blowing up
(x2, y3, z3). Similarly, x2 + y2 + zmtm = 0 asks for the blowing up of (x, y, zm, tm).

For the Whitney umbrella once again only the z chart is interesting, where the
coordinates on the ambient stack are as follows:

X ′ = [SpecC[x1, y1, w]/(±1)],

where x1 = x/w3, y1 = y/w2, and z = w2, and the action of (±1) given by
(x1, y1, w) 7→ (−x1, y1,−w).

The equation x2 = zy2 translates to w6x2
1 = w6y2

1 . Here (w6) = I6
E is the

exceptional factor of the equation, and the proper transform is

x2
1 = y2

1 .

In other words, with the weighted blowing up, the degrees (2, 3, 3) immediately
dropped to (2, 2), with the spectre of infinite loops exorcised! One additional blow-
ing up along x1 = y1 = 0 resolves the singularities.

1.3.3. The second example. The z chart of the weighted blowing up of the equation
x2 + y2 + zmtm = 0 is in fact a scheme, with coordinates (x1, y1, z, t1) satisfying
x = x1z

m, y = y1z
m and t = zt1. After factoring z2m we get x2

1 +y2
1 + tm1 = 0, with

lower degrees (2, 2,m) < (2, 2, 2m, 2m). A single weighted blowing up resolves the
singularities.

The x and y charts are smooth, though they do carry a nontrivial stack structure.

2. Valuative ideals, fractional ideals, and Q-deals

Given an integral scheme Y we are interested in understanding ideals as they be-
have after arbitrary blowing up. It is thus natural to work with the Zariski-Riemann
space ZR(Y ) of Y , the projective limit of all projective birational transformations
of Y , whose points consist of all valuation rings R of K(Y ) extending to a morphism
SpecR→ Y .

The space ZR(Y ) carries a constant sheaf K, a subsheaf of rings O with stalk
at v consisting of the valuation ring Rv, and a sheaf of ordered groups Γ such that
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v : K∗ → Γ is the valuation. The image v(O) =: Γ+ ⊂ Γ is the valuation monoid
consisting of non-negative sections of Γ.

We will freely use the analogous construction when Y is a DM stack and not
necessarily integral: replacing Y by its normalization and taking the disjoint union
of Zariski–Riemann spaces of components we reduce to the integral case, and if Ȳ is
the coarse moduli space we can take ZR(Y ) to be the normalization of Y ×Ȳ ZR(Y ).

By a valuative ideal on Y we mean a section γ ∈ H0(ZR,Γ+). Every ideal I on
every birational model Y ′ → Y , proper over Y , defines a valuative ideal we denote
v(I) by taking the minimal element of the image of I in Γ+. Ideals with the same
integral closure have the same valuative ideal. Every valuative ideal γ defines an
ideal sheaf on every such Y ′ by taking Iγ := {f ∈ OY ′ |v(f) ≥ γv∀v}, which is
automatically integrally closed.

By a valuative fractional ideal we mean a section γ ∈ H0(ZR,Γ), not necessarily
positive, with similar correspondenes. These do not figure in this paper.

The group ΓQ = Γ ⊗ Q is also ordered. We denote the monoid of non-negative
elements ΓQ+. By a valuative Q-ideal we mean a section γ ∈ H0(ZR,ΓQ+). The
definition of Iγ extends to this case. It is a convenient way to consider Q-ideals.
There is again a similar notion of a valuative fractional Q-ideal.

By a center on X we mean the valuative Q-ideal γ for which there is an affine

covering Y = ∪Ui and regular systems (x
(i)
1 , . . . , x

(i)
k ) = (x1, . . . , xk) on Ui such

that γUi = v(J) is the valuative Q-ideal associated to J := (xa11 , . . . , xakk ) for some
aj ∈ Q>0.

A center γ is admissible for a valuative Q-ideal β if γv ≤ βv for all v. A center is
admissible for an ideal I if it is admissible for the associated vauative Q-ideal v(I).

We will use the notation J = (xa11 , . . . , xakk ) to indicate the center, rather than
the associated γ. The center is reduced if wi = 1/ai are positive integers with

gcd(w1, . . . , wk) = 1. For any center J we write J̄ = (x
1/w1

1 , . . . , x
1/wk

k ) for the

unique reduced center such that J̄` = J for some ` ∈ Q>0.

3. Weighted blowings up

Reid [Rei02] championed weighted blowings up in birational geometry. The
paper [AH11] uses stack-theoretic projective spectra to study moduli spaces of
varieties. Rydh’s appendix [Ryd19] provides some foundations.

3.1. Graded algebras and their Proj. Given a quasicoherent graded algebra
A = ⊕m≥0Am on Y with associated Gm-action defined by (t, s) 7→ tms for s ∈ Am
we define its stack-theoretic projective spectrum to be

ProjYA := [(SpecOY
Y r S0)/Gm],

where the vertex S0 is the zero scheme of the ideal ⊕m>0Am.

3.2. Rees algebras of ideals. If I is an ideal, its Rees algebra is AI := ⊕m≥0Im,
and the blowing up of I is Y ′ = BlY (I) := ProjY (AI). It is the universal birational
map making IOY ′ invertible, in this case Y ′ → Y projective.

3.3. Rees algebras of valuative Q-ideals. Now let γ be a valuative Q-ideal, and
define its Rees algebra to be

Aγ :=
⊕
m∈N
Imγ .
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The blowing up of γ is defined to be Y ′ = BlY (γ) := ProjYAγ . Now Iγ,Y ′ =
E ⊂ OY ′ is an invertible ideal, and once again Y ′ → Y satisfies the corresponding
universal property. 1

←1

Note that if Y1 → Y is smooth and Y ′1 = BlY (γOY1
) then Y ′1 = Y ′ ×Y Y1.

3.4. Weighted blowings up: local equations. Now consider the situation where

γ is a center of the special form J = (x
1/w1

1 , . . . , x
1/wk

k ), with wi ∈ N. In this case

the algebra Aγ =
⊕

m∈N Imγ , with Imγ = (xb1i · · ·xbnn |
∑
wibi ≥ m) is the integral

closure of the simpler algebra with generators (xi) in degree wi. We can therefore
describe BlY (J) = BlY (γ), which deserves to be called a stack-theoretic weighted
blowing up, explicitly in local coordinates.

The chart associated to x1 has local variables u, x′2, . . . , x
′
n, where

• x = uw1 ,
• x′i = xi/u

wi for 2 ≤ i ≤ k, and
• x′j = xj for j > k.

The group µw1
acts through

(u, x′2, . . . , x
′
k) 7→ (ζw1

u, ζ−w2
w1

x′2, . . . , ζ
−wk
w1

x′k)

and trivially on x′j , j > k, giving an étale local isomorphism of the chart with
[SpecC[u, x′2, . . . , x

′
n]/µw1

]. It is easy to see that these charts glue to a stack-
theoretic modification Y ′ → Y with a smooth Y ′ and its coarse space is the classical
(singular) weighted blowing up.

We sometimes, but not always, insist on gcd(w1, . . . , wk) = 1, in which case
the center is reduced. The relationshop is summarized by the following immediate
lemma:

Lemma 3.4.1. If J ′ = (x
1/w1

1 , . . . , x
1/wk

k ) and J ′′ = (x
1/cw1

1 , . . . , x
1/cwk

k ) with wi, c
positive integers, if Y ′, Y ′′ → Y are the corresponding blowings up, with E′, E′′ the
exceptional divisors, then Y ′′ = Y ′( c

√
E′) is the root stack of Y ′ along E′.

3.5. Weighted blowings up: local toric description. Again working locally,
assume that Y = Spec k[x1, . . . , xn]. It is the affine toric variety associated to the
monoid Nn ⊂ σ = Rn≥0. Here the generator ei of Nn corresponds to the monomial

valuation vi associated to the divisor xi = 0, namely vi(xj) = δij .

The monomial x
1/wi

i defines the linear function on σ whose value on (b1, . . . , bn)

is its valuation bi/wi. The ideal (x
1/w1

1 , . . . , x
1/wk

k ) thus defines the piecewise linear
function mini{bi/wi}, which becomes linear precisely on the star subdivision Σ =
vJ̄ ? σ with

vJ̄ = (w1, . . . , wk, 0, . . . , 0).

This defines the scheme theoretic weighted blowing up Ȳ ′. Note that this cochar-
acter vJ̄ is a multiple of the valuation associated to the exceptional divisor of the
center.

Since vJ̄ is assumed integral, we can apply the theory of toric stacks [BCS05,
FMN10, GS15a, GS15b, GM15]. We have a smooth toric stack Y ′ → Ȳ ′ associated
to the same fan Σ with the cone σi = 〈vJ̄ , e1, . . . , êi, . . . , en〉 endowed with the
sublattice Ni ⊂ N generated by the elements vJ̄ , e1, . . . , êi, . . . , en, for all i =
1, . . . , k. This toric stack is precisely the stack theoretic weighted blowing up Y ′ →
Y .

1(Dan) Refer to Rydh’s writeup or else prove
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4. Centers, invariants, and blowing up

4.1. The principalization theorem.

Theorem 4.1.1 (Principalization). There is a functor F associating to I ⊂ OY , I 6=
(0), (1) a center J̄ with blowing up Y ′ → Y and proper transform I ′ ⊂ O′Y such that
maxinv(I ′) < maxinv(I). In particular there is an integer n so that the iterated
application (In ⊂ OYn

) := F ◦n(I ⊂ OY ) of F has I1 = (1).
The stabilized functor F ◦∞(I ⊂ OY ) is functorial for all smooth morphisms,

whether or not surjective.

Theorem 1.1.1 follows from Theorem 4.1.1 by stopping at the point where maxinv(I) =
(1, . . . , 1), the sequence of length c.

4.2. Coefficient ideals. We rely on [ATW17], except that we use the saturated
coefficient ideal as in [Kol07, ATW18]:

Definition 4.2.1. Let I ⊂ OY and a > 0 an integer. Then

C(I, a) =
∑

f(I,D≤1I, . . . ,D≤a−1I),

where f(t0, . . . , ta−1) runs over all monomials tb00 · · · t
ba−1
a1 of weighted degree

a−1∑
i=0

(a− i) · bi ≥ a!.

The formation of C(I, a) is functorial for smooth morphisms: if Y1 → Y is
smooth then C(I, a)OY1

= C(IOY1
, a).

Now consider I ⊂ OY and assume x ∈ D≤a−1I is a maximal contact element at
p ∈ Y .

Lemma 4.2.2 ([Kol07, BM08, ATW18]). After passing to completions we may
write

C(I, a) = (xa!
1 ) + (xa!−1

1 Ĩa!−1) + · · ·+ (x1Ĩ1) + Ĩ0,

where

I0 ⊂ (x2, . . . , xn)a! ⊂ kJx2, . . . , xnK,
where Ij+1 := D≤1(Ij) satisfy Ia!−kIa!−l ⊂ Ia!−(k+l), and Ĩj = IjkJx1, . . . , xnK.
In fact Ij is the restriction to x1 = 0 of the similarly formed ideal∑

∑a−1
i=0 (a−i)·bi ≥ a!−j

f(I,D≤1I, . . . ,D≤a−1I).

4.3. Existence of invariants and centers. Fix an ideal I = I[1] 6= 0. We define
a finite sequence of integers bi, rational numbers ai, and parameters xi.

Set a1 = b1 := ordp(I[1]), and take the parameter x1 to be a maximal contact
element at p. Inductively one writes I[i+ 1] = C(I[i], bi)|V (x1,...,xi), the restricted
coefficient ideal, with order ordp(I[i+ 1]) = bi+1, one sets ai+1 = bi+1/(bi − 1)!,
and one takes xi+1 a lifting to Y of the maximal contact element for I[i+ 1].

Equivalently, invp(I[1]) = (a1, invp(I[2])/(a1 − 1)!) the concatenation, and x2, . . .
are lifts of the parameters for I[2].

The invariant takes values in the well-ordered subset

a1 ∈ N and ai+1 ∈ N · 1

(bi − 1)!
.
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It was shown in [ATW17] that this invariant is functorial for smooth morphisms:
if Y1 → Y is smooth and p′ ∈ Y ′ then invp′(IOY1) = invp(I).

4.4. Admissibility of centers. As in earlier work on resolution of singularities,
admissibility allows flexibility in studying the behavior of ideals under blowings up
of centers. This becomes important when an ideal is related to the sum of ideals
with different invariants of their own, but all admitting a common admissible center.

We focus on sequences (a1, . . . , ak) which occur as invariants, in particular a1 a
positive integer and ai ≤ ai+1.

4.4.1. Admissibility and blowing up. We say that a center J = (xa11 , . . . , xakk ) is
I-admissible at p if the inequality v(xa11 , . . . , xakk ) ≤ v(I) of valuative Q-ideals is
satisfied. This can be described in terms of the weighted blowing up Y ′ → Y of the

reduced center J̄ := (x
1/w1

1 , . . . , x
1/wk

k ), with wi integers with gcd(w1, . . . , wk) = 1
as follows: let E = J̄OY ′ , which is an invertible ideal sheaf. Note that since
a1w1 is an integer also JOY ′ = Ea1w1 is an invertible ideal sheaf. Therefore J =
(xa11 , . . . , xakk ) is I-admissible if and only if Ea1w1 is IOY ′ admissible, if and only
if IOY ′ = Ea1w1I ′, with I ′ an ideal.

In terms of its monomial valuation, J is admissible for I if and only if vJ(f) ≥ 1

for all f ∈ I. This means that if f =
∑
cᾱx

α1
1 · · ·xαn

n then
∑k
i=1 αi/ai ≥ 1

whenever cᾱ 6= 0.
If Y1 → Y is smooth and J is I-admissible then JOY1 is IOY1-admissible, with

the converse holding when Y1 → Y is surjective.

4.4.2. Working with rescaled centers. For induction to work in the arguments below,
it is worthwhile to consider blowings up of centers of the form

J̄1/c := (x
1/(w1c)
1 , . . . , x

1/(wkc)
k )

for a positive integer c. We note that this does change the notion of admisibility
of J . We also use the notation Jα := (xa1α1 , . . . , xakαk ) throughout - the equality
should be understood in terms of valuative Q-ideals.

4.4.3. Basic propoerties. The description of the monomial valuation of J immedi-
ately provides the following lemmas:

Lemma 4.4.4. If J is both I1-admissible and I2-admissible then J is I1 + I2-
admissible. If J is I-admissible then Jk is Ik-admissible. More generally if Jcj is
Ij-admissible then J

∑
cj is

∏
Ij-admissible.

Indeed if vJ(f) ≥ 1 and vJ(g) ≥ 1 then vJ(f + g) ≥ 1, etc.

Lemma 4.4.5. If J is I-admissible then J ′ = J
a1−1
a1 is D(I)-admissible. If a1 > 1

and J
a1−1
a1 is I-admissible then J is x1I-admissible.

Proof. For the first statement note that if
∑k
i=1 αi/ai ≥ 1 and αj ≥ 1 then

vJ

(
∂(xα1

1 · · ·xαn
n )

∂xj

)
=

k∑
i=1

αi/ai − 1/aj ≥ 1 − 1/a1,

so

vJ′

(
∂(xα1

1 · · ·xαn
n )

∂xj

)
≥ 1,

as needed. The other statement is similar. ♣
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Lemma 4.4.6. For I0 ⊂ k[x2, . . . , xn] write Ĩ0 = I0k[x1, . . . , xn]. Assume a1 ≤ a2

and (xa22 , . . . xakk ) is I0-admissble. Then (xa11 , . . . xakk ) is Ĩ0-admissble.

Here for generators of I0 we have
∑k
i=1 αi/ai =

∑k
i=2 αi/ai.

Lemma 4.4.7. J is I-admissible if and only if J (a1−1)! is C(I, a1)-admissible.

This combines Lemmas 4.4.4 and 4.4.5 for the terms defining C(I, a1).

4.5. Our chosen center is admissible.

Theorem 4.5.1. If (a1, . . . , ak) = invp(I), with corresponding parameters x1, . . . , xk,
and J = (xa11 , . . . , xakk ), then J is I admissible.

Proof. Applying Lemma 4.4.7, we replace I by C(I, a1), rescale the invariant ap-
propriately and work on formal completion. We may therefore write

I = (xa11 ) + (xa1−1
1 Ĩa1−1) + · · ·+ (x1Ĩ1) + Ĩ0

as in Lemma 4.2.2.
The inductive hypothesis implies (xa22 , . . . , xakk ) is I0-admissible. By Lemma

4.4.6 J is Ĩ0-admissible. By Lemma 4.4.5 J is (xa1−j1 Ĩa1−j)-admissible, implying
that J is I-admissible, as needed. ♣

As an example for the added flexibility provided by admissibility, the center
(x6

1, x
6
2) is (x3

1x
3
2)-admissible because this is the corresponding invariant, but also

(x5
1, x

15/2
2 ) is admissible. This second center becomes important when one considers

instead the ideal (x5
1 +x3

1x
3
2), or even (x5

1 +x3
1x

3
2 +x8

2), whose invariant is (5, 15/2),
as described in Section 5 below.

4.6. The invariant drops. With admissibility of the center we can now analyze
the behavior of the invariant:

Theorem 4.6.1. Let (a1, . . . , ak) = invp(I), with corresponding parameters x1, . . . , xk,
and J = (xa11 , . . . , xakk ). For c ∈ N>0 write Y ′c → Y for the blowing up of the

rescaled center J̄1/c :=
(
x

1/(w1c)
1 , . . . , x

1/(wkc)
k

)
, with corresponding factorization

IOY ′c = Ea1w1cI ′. Then for every point p′ over p we have invp′(I ′) < invp(I).

Proof. If k = 0 the ideal is (0) and there is nothing to prove. When k = 1 the ideal
is (xa11 ), which becomes exceptional with proper transform (1). We now assume
k > 1.

Again using Lemma 4.2.2, we choose formal coordinates, work with C := C(I, a1),
rescale the invariant by (a1 − 1)!, and write

C = (xa1!
1 ) + (xa1!−1

1 C̃a1!−1) + · · ·+ (x1C̃1) + C̃0.
Writing COY ′c = Ea1!w1cC′, we will first show that invp′(C′) < (a1−1)!·(a1, a2, . . . , ak)
for all points p′ over p.

Write H = {x1 = 0}, and H ′ → H the blowing up of the reduced center

associated to JH := (xa22 , . . . , xakk ). By Lemma 3.4.1 the proper transform H̃ ′ → H

of H via the blowing up of J is the root stack H ′( cc′
√
EH) of H ′ along EH ⊂ H ′,

where c′ = lcm(w1, . . . , wk)/lcm(w2, . . . , wk).
We now inspect the behavior on different charts. On the x1-chart the first term

becomes (xa1!
1 ) = Ea1!w1c · (1) so invp′C′ = inv(1) = 0.2 This implies that on all

2This reflects the fact that before passing to the coefficient ideal ord(I′) < a1 on this chart -
it need not become a unit ideal in general!
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other charts it suffices to consider p′ ∈ H ′ ∩ E. By the inductive assumption, for
such points we have

invp′(C0)′ < (a1 − 1)! · (a2, . . . , ak).

Note that the term (xa1!
1 ) in C is transformed to a term of the same form (x′

a1!
1 ).

It follows that ordp′(C′) ≤ a1!, and if ordp′(C′) < a1! then a fortiori invp′(C′) <
invp(C).

If on the other hand ordp′(C′) = a1 then the variable x′1 is a maximal contact
element. Using the inductive assumption we compute

invp′(x
′a1
1 , C′0) =

(
a1, inv(C′j)

)
< (a1, inv(Cj)) = (a1, . . . , ak).

Since C′ includes this ideal, we obtain again invp′(C′) < invp(C), as claimed.
We note that as in [ATW18], in this case the invariant of the original ideal

drops as well. Indeed since the invariant of C′ drops, the invariant of at least
one of the terms (Ca1!−j)

′ drops, implying that the invariant of at least one of
the corresponding monomials (f(I,D≤1I, . . . ,D≤a−1I))′ drops below its expected
value, implying in turn that the invariant of (D≤jI)′ drops, which in particular
implies that the invariant of I ′ drops by Lemma 4.4.5, as needed. ♣

4.7. Uniqueness of centers. The definition of the center J involved an iterated
choice of maximal contact elenments xi, which are in general not unique. However,

Theorem 4.7.1. The center J is unique.

Proof. We may pass to completions, replace ideals by coefficient ideals and rescale,
so that again we may assume

I = (xa11 ) + (xa1−1
1 Ĩa1−1) + · · ·+ (x1Ĩ1) + Ĩ0.

If J = (xa11 , · · · , xakk ) and J1 is another center, we may assume by induction

that J1 = ((x1 + f)a1 , xa22 , · · · , xakk ), where f ∈ Ĩa1−1. The lemmas imply that J
is admissible for each term in J1 hence J is admissible for the ideal J1. Reversing
the roles we have that J1 is admissible for the ideal J . This implies that as centers
they agree. ♣

Proof of Theorem 4.1.1. Theorem 4.1.1 follows from Theorems 4.6.1 and 4.7.1. ♣

4.8. Deriving the graded algebra A of J̄ from I. More than uniqueness, we
have a canonical way to derive the graded algebra AJ̄ associated to J̄ from the
ideal I.

Let A(0) = O ⊕ I ⊕ I2 ⊕ · · · be the Rees algebra of I.

We define A(1) to be the algebra graded in N1 := (1/a1)Z, generated by D≤jA(0)
m

placed in degree m − (j/a1), for j = 0, . . . a1 − 1. In particular A(1)
1/a1

= D≤a1−1I
is the maximal contact ideal. This is the differential-closed algebra associated to I
in [EV07].

For any maximal contact element x1 consider the sheaf Dlog x1
of differential

operators preserving the ideal (x1). Let N2 := N1 + (1/a2)Z. Define A(2) to be

the algebra graded in N2, generated by D≤jlog x1
A(1)
m placed in degree m− (j/a2), for

j = 0, . . . a2 − 1.

Inductively, for any element xi of A(i)
1/ai

of order 1 which is nonzero modulo

(x1, . . . , xi−1) consider the sheaf Dlog(x1···xi) of differential operators preserving the
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ideal (x1 · · ·xi). Let Ni+1 := Ni + (1/ai+1)Z. Define A(i+1) to be the algebra

graded in Ni+1, generated by D≤jlog(x1···xi)
A(i)
m placed in degree m − (j/ai+1), for

j = 0, . . . ai+1 − 1.

Lemma 4.8.1. The algebra A(i+1) is independent of the choice of x1, . . . , xi.

Proof. Sketch of proof. Indeed, if for instance we replace xi by xi+f(xi+1, . . . , xn)
then for j > i the operator ∇j := ∂/∂xj is replaced by ∇′j := ∇j − (∂f/∂xj)∇i.
Note that

(∇j −∇′j)A(i)
m = (∂f/∂xj)∇iA(i)

m ⊂ A(i+1)
1/ai−1/aj

A(i+1)
m−1/ai

⊂ A(i+1)
m−1/aj

,

as needed. An identical computation shows that if we replace the lifted element xi
to xi + f(x1, . . . , xi−1) the algebra A(i+1) does not change. ♣

Theorem 4.8.2. A(k) = AJ̄ as graded algebras.

Proof. Up to rescaling, we may replace I by C(I, a1), work on formal completions,
and write

I = (xa11 ) + (xa1−1
1 Ĩa1−1) + · · ·+ (x1Ĩ1) + Ĩ0.

Writing J0 = (xa21 , . . . , xakk ) we may form the graded algebra B(k−1) associated

to I0. By induction we have B(k−1) = AJ̄0 . Taking into account the rescaling factor
c′ = lcm(w1, . . . , wk)/lcm(w2, . . . , wk) the result follows.

♣

4.9. Interpretations.

(1) (Newton polyhedron) Given the coordinates xi, the center describes the
lowest facet of the newton polyhedron of I, and the invariant is its slope.

(2) (Tropicalization) Given the coordinates, the center is the monomial valua-
tion described by the barycenter of the top facet of Trop(I).

(3) (Nonarchimedean geometry) as the tropicalization with respect to the co-
ordinates xi embeds in the Berkovich space, the center once again is the
barycenter of the top facet of Y an associated to the piecewise linear function
determined by I.

5. Two examples

Consider the plane curve

X = V (x5 + x3y3 + yk)

with k ≥ 5. Its resolution depends on whether or not k ≥ 8.

5.1. The case k ≥ 8. This curve is singular at the origin p. We have a1 =
ordp(IX) = 5. Since D≤4I = (x, y2) we may take x1 = x and H = V (x). A direct
computation provides the coefficient ideal

C(IX , 5)|H = (D≤3(IX)|H)120/2 = (y180),

with b2 = 180 and a2 = 180/(4!) = 15/2. Rescaling, we need to take the weighted
blowup of J̄ = (x1/3, y1/2).
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• In the x-chart we have x = u3, y = u2y′, giving

Y ′x = [Spec k[u, y′]/µ3],

the action given by (u, y′) 7→ (ζ3u, ζ3y
′). The equation of X becomes

u15(1 + y′
3

+ u2k−15y′
k
),

with proper transform X ′x = V (1 + y′
3

+ u2k−15y′
k
) smooth.

• In the y-chart we have y = v2, x = v3x′, giving

Y ′y = [Spec k[x′, v]/µ2],

the action given by (x′, v) 7→ (−x′,−v). The equation of X becomes

v15(x′
5

+x′
3

+ v2k−15), with proper transform X ′y = V (x′
5

+x′
3

+ v2k−15).
Note that X ′y is smooth when k = 8. Otherwise it is singular at the

origin with invariant (3, 2k− 15), which is lexicographically strictly smaller
than (5, 15/2); A single weighted blowing up resolves the singularity.

5.2. The case k ≤ 7. Consider now the same equation with k = 7 (the cases
k = 5, 6 being similar). We still take a1 = 5, x1 = x and H = V (x). This time

C(IX)|H = ((IX)|H)120/5 = (y168),

with b2 = 7 · (4!) and a2 = 7. We take the weighted blowup of J = (x1/7, y1/5).

• In the x-chart we have x = u7, y = u5y′, giving

Y ′x = [Spec k[u, y′]/µ7],

the action given by (u, y′) 7→ (ζ7u, ζ
−5
7 y′). The equation of X becomes

u35(1 + uy′
3

+ y′
7
),

with proper transform X ′x = V (1 + uy′
3

+ y′
7
) smooth.

• In the y-chart we have y = v5, x = v7x′, giving

Y ′y = [Spec k[x′, v]/µ5],

the action given by (x′, v) 7→ (ζ−7
5 x′, ζ5v). The equation of X becomes

v35(x′
5

+ vx′
3

+ 1), with smooth proper transform X ′y = V (x′
5

+ vx′
3

+ 1).
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