FUNCTORIAL FACTORIZATION OF BIRATIONAL MAPS FOR
QE SCHEMES IN CHARACTERISTIC 0

DAN ABRAMOVICH AND MICHAEL TEMKIN

ABSTRACT. We prove functorial weak factorization of projective birational
morphisms of regular quasi-excellent schemes in characteristic 0 based on the
existing line of proof for varieties. From this we deduce factorization of any
blowing up of formal schemes, complex analytic germs, Berkovich analytic or
rigid analytic spaces.
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1. INTRODUCTION

1.1. The class of ge schemes (originally “quasi excellent schemes”) is the natural
class of schemes on which problems around resolution of singularities are of interest.
They can also be used as a bridge for studying the same type of problems in other
geometric categories, see [Tem 12, Section 5. In this paper we address the problem
of functorial factorization of birational morphisms between regular qe schemes of
characteristic 0 into blowings up and down of regular schemes along regular centers.
We rely on general foundations developed in [AT'15a, AT15b] and the approach for
varieties of [Wlo00, AKMWO02]. As a consequence of both this generality of qe
schemes and of functoriality, we are able to deduce factorization of birational or
bimeromorphic morphisms in other geometric categories of interest.
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1.2. Blowings up and weak factorizations. We start with a morphism of noe-
therian ge regular schemes ¢: X; — Xo given as the blowing up of a coherent
sheaf of ideals I on the ge scheme X5. In addition, we provide ¢ with a boundary
(D1, D), where each D; is a normal crossings divisor in X; and Dy := ¢~ D5. Let
U = Xo \ (D2 UV(I)) be the maximal open subscheme of X5 such that I is the
unit ideal on U and the boundary is disjoint from U. The restriction of ¢ on U is
the trivial blowing up (i.e. the blowing up of the empty center), in particular, we
canonically have an isomorphism ¢ U — U. We often keep the ideal I implicit in
the notation, even though it determines ¢ (but see Section 2.3.8 for a construction
in the reverse direction). The reader may wish to focus on the following two cases
of interest: (i) Do = 0; (ii) V(I) C Da.

A weak factorization of a blowing up ¢: X; — X5 is a diagram of regular qge
schemes

® w2 Pr—1 P
Xi=Vo-=Vi-Cs . 25V -2V =X,

along with regular schemes Z; for i = 1, ..., and ideal sheaves J; fori=1,...,(I—
1) satisfying the following conditions:

(1) d=@ropi10---0ps0p1.

(2) The maps V; --» X, are morphisms; these maps as well as ¢; induce
isomorphisms on U.

(3) For every i = 1,...,1 either ¢;: V;_1 --» V; or go;l: Vi - V,_; is a
morphism given as the blowing up of Z;, which is respectively a subscheme
of V; or V;_; disjoint from U.

(4) The inverse image Dy, C V; of Dy C X5 is a normal crossings divisor and
Z; has normal crossings with Dy,.

(5) For every i =1,...,(l —1), the morphism V; — X5 is given as the blowing
up of the corresponding coherent ideal sheaf J; on X5, which is the unit
ideal on U.

To include Vj — X5, we define Jy = I. The ideals J; are a convenient way to
encode functoriality, especially when we later pass to other geometric categories.

These conditions are the same as (1)—(5) in | , Theorem 0.3.1], except
that here the centers of blowing up and ideal sheaves are specified. Condition (2)
is formulated for convenience; it is a consequence of (3) and (5). Note that here, as
in | , Theorem 0.3.1], the centers are not assumed irreducible, in contrast
with [ , Theorem 0.1.1]. With these condition, the most basic form of our
main theorem is as follows:

Theorem 1.2.1 (Weak factorization). Every birational blowing up ¢: X1 — Xo
of a noetherian qe regular Q-scheme has a weak factorization X1 = Vy --+ V; --»
== Vi1 -V = X5,

The adjective “weak” serves to indicate that blowings up and down may alternate
arbitrarily among the maps ;, as opposed to a strong factorization, where one has
a sequence of blowings up followed by a sequence of blowings down. We note that
at present strong factorization is not known even for toric threefolds.

Theorem 1.2.1 generalizes | ,0.0.1] and [ , Theorem 0.1.1], where
the case of varieties is considered. But we wish to prove a more precise theorem.
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1.3. Functorial weak factorization. The class of data (X5, I, Dy), namely mor-
phisms ¢: X1 — X5 of noetherian ge regular schemes given as blowings up of ideals
I, with divisor D5 as in Section 1.2, can be made into the reqular surjective category
of blowings up, denoted Bl,g, by defining arrows as follows:

Definition 1.3.1. An arrow from the blowing up ¢': X = Bip(X}) — X} to
¢ : Xy = Blj(X3) — X is a regular and surjective morphism ¢ : X5 — X5 such
that g*I = I’ and g~'Dy = D). In particular, g induces a canonical isomorphism
X — X1 xx, X5 and D] is the preimage of Dy under X; — Xj.

Similarly, weak factorizations can be made into the regular surjective category
of weak factorizations, denoted Fact,s, by defining arrows as follows:

Definition 1.3.2. A morphism in Fact,s from a weak factorization

X1 =Vy--V] - ... -V | -V =X}
of ¢/ X{ — X, with centers Z and ideals J] to a weak factorization

X1 :‘/0 i d Vl I At 4 ‘/2_1 ——-)‘/l :XQ
of ¢: X1 — Xs, with centers Z; and ideals J; consists of a regular surjective mor-
phism g: X} — X, such that ¢*I = I, ¢*J; = J/ inducing g¢;: V/ — V;, such
that Z! = g;lZi or g;_llZi as appropriate. In particular ¢; o g;—1 = ¢; o ¢; and
g; "Dy, = Dy,

Note that given a factorization of ¢, any morphism from a factorization of ¢’ is
uniquely determined by g: X — X.

If we wish to restrict to schemes in a given characteristic p we denote the cat-
egories Blys(char = p) and Fact,s(char = p) respectively. If we wish to restrict the
dimension we write Bl,s(char = p,dim < d) and Fact,s(char = p, dim < d).

There is an evident forgetful functor Fact,s — Bl taking a weak factorization
Xi=VW-->Vi - ... ——» Vi1 --» V; = X5 to its composition ¢: X; —
X5. The weak factorization theorem provides a section, when strong resolution of
singularities holds:

Theorem 1.3.3. (1) FUNCTORIAL WEAK FACTORIZATION: There is a functor
Bl,s(char = 0) — Fact,s(char = 0)
assigning to a blowing up ¢: X1 — Xo in characteristic 0 a weak factoriza-
tion
X1 == VO - V1 = ... ——2 Vvl_l -=> ‘/2 = X27

so that the composite Bls(char = 0) — Fact,s(char = 0) — Bls(char = 0)
1s the identity.

(2) CONDITIONAL FACTORIZATION IN POSITIVE AND MIXED CHARACTERIS-
TICS: If functorial embedded resolution of singularities applies in charac-
teristic p (respectively, over Z) for schemes of dimension < d + 1, then
there is a functor

Bl,s(char = p,dim < d) — Fact,s(char = p,dim < d)
(respectively, a functor

Blis(dim < d) — Fact,s(dim < d))
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which is a section of Fact,s(char = p,dim < d) — Bls(char = p, dim < d)
(respectively, Facts(dim < d) — Bls(dim < d)).

This generalizes a theorem for varieties in characteristic 0, | , Theorem
0.3.1 and Remark (3) thereafter], | , Theorem 1.1], [ , Theorem 0.0.1],
where the factorization is only shown to be functorial for isomorphisms. The precise
statements we need for part (2) are spelled out below as Hypothetical Statements
2.1.4 and 2.2.4.

Remark 1.3.4 (Preservation of G-normality). In | , Definition 3.1] Borisov
and Libgober introduce G-normal divisors and in [ , Theorem 3.8] they show
that this condition can be preserved in the algorithm of | ]. The same
holds true here, using the same argument of | , Theorem 3.8], by performing

the sequence of blowings up associated to the barycentric subdivision on the schemes

45 obtained in Section 5.2. Details are left to the interested reader.

1.4. Applications of functoriality. We need to justify the somewhat heavy func-
torial treatment. Of course functoriality may be useful if one wants to make sure
the factorization is equivariant under group actions and separable field extensions;
this has been of use already in the case of varieties. But it also serves as a tool to
transport our factorization result to other geometric spaces.

Blowings up of regular objects is a concept which exists in categories other than
schemes, for instance: Artin stacks, qe formal schemes, complex semianalytic germs
(see Appendix B), Berkovich k-analytic spaces, rigid k-analytic spaces. For brevity
we denote the full subcategory of ge noetherian objects in any of these categories
by Gp. Functoriality, as well as the generality of qe schemes, is crucial in proving
the following;:

Theorem 1.4.1 (Factorization in other categories). Any blowing up X1 — X of
either noetherian ge reqular algebraic stacks, or reqular objects of &p, in charac-
teristic 0 has a weak factorization X1 = Vg —=» Vi —=» ... —=> V1 -5 V] = X,
The same holds in positive and mized characteristics (when relevant) if functorial
embedded resolution of singularities for gqe schemes applies in positive and mized
characteristics.

See Theorem 6.1.3 for the case of stacks and Theorem 6.4.5 for other categories,
where functoriality is also shown, in other words Theorem 1.3.3 applies in each
of the categories Gp. In addition, the argument deducing Theorem 6.1.3 from
Theorem 1.3.3 is a formal one based on functoriality, so the same argument can
be used to extend Theorem 6.4.5 to stacks in the categories of formal schemes,
Berkovich spaces, etc., once an appropriated theory of stacks is constructed, see for
instance | , , , , ].

1.5. The question of stronger functoriality. It is natural to replace the cate-
gory Blys by the category Bl,. with the same objects but where arrows g : X} — Xo
as in Definition 1.3.1 are not required to be surjective, only regular. In a simi-
lar way one can replace the category Fact,s by a category Fact,. As explained in
[ , §2.3.3] for resolution of singularities, removing the surjectivity assumption
requires imposing an equivalence relation on factorizations, in which two factoriza-
tions which differ by a step which is the blowing up of the unit ideal are considered
equivalent. It is conceivable that the analogue of Theorem 1.3.3 may hold for
Fact, — Bl,.
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1.6. Factorization of birational and bimeromorphic maps. Our results for
projective morphism imply results for birational and bimeromorphic maps. We start
with the case of schemes. By a proper birational map f: X; --» X5 of reduced
schemes we mean an isomorphism fo: Uy — Us of dense open subschemes such
that the closure Y C X7 x X5 of the graph of fj is proper over each X;. Assume
that X; are regular. The factorization problem for the birational map f reduces to
factorization of the proper morphisms Y™ — X;, where Y™ is a resolution of Y.
Assume, now, that f: X; — X, is a proper birational morphism. By a blow up
version of Chow’s lemma (e.g., it follows from the flattening of Raynaud-Gruson)
there exists a blowing up Y = Bl;(X;) — Xs that factors through X;. Then
Y = Bly-1;(X1) and hence the resolution Y, which is the blowing up of Y, is
also a blowing up of both X;. Thus, factorization of f reduces to the factorization
for blowings up, which was dealt with in Theorem 1.3.3.

Now, assume that Gp is any geometric category. The definition of a proper
bimeromorphic map f: X; — X5 is similar to the definition of a proper birational
map with two addenda: in the case of stacks we require that the morphisms Y — X
are representable, and in the case of analytic spaces or formal schemes we require
that U is open Y (in particular, ¥ — X; are bimeromorphic). Then the general
factorization problem immediately reduces to the case when f is a proper morphism.
Furthermore, if objects of Gp are compact and if Chow’s lemma holds in &p then
the problem reduces further to the case when f is a blowing up. For complex
analytic spaces, Chow’s lemma was proved by Hironaka in [ , Corollary 2]. Tt
extends immediately to the complex analytic germs we consider in this paper, and
these are indeed compact. Most probably, it also holds in all other categories Gp
we mentioned, but this does not seem to be worked out so far.

2. QE SCHEMES AND FUNCTORIALITY

2.1. Qe schemes and their resolution of singularities.

2.1.1. Qe schemes. The class of quasi-excellent schemes was introduced by Grothen-
dieck as the natural class where problems related to resolution of singularities be-
have well. The name “quasi-excellent” is perhaps not very elegant (it was not in-
troduced by Grothendieck), and we feel it harmless to refer to them as ge schemes.

First recall that regular morphisms are a generalization of smooth morphisms in
situations of morphisms which are not necessarily of finite type. Following | ,
IV,, 6.8.1] a morphism of schemes f: Y — X is said to be regular if

e the morphism f is flat and
e all geometric fibers of f: Y — X are regular.

A locally noetherian scheme X is a ge scheme if the following two conditions
hold:

o for any scheme Y of finite type over X, the regular locus Y;¢s is open; and
e For any point € X, the completion morphism Spec Ox , — Spec Ox , is
regular.

It is a known, but nontrivial fact, that a scheme Y of finite type over a qe scheme
is also a qe scheme, see, for example, | , 34.A]. A ring A is a qe ring if Spec A
is a ge scheme.
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2.1.2. Resolution of singularities of qe schemes: characteristic 0. Since | ,
IVy, 7.9.6], it is universally hoped that every qe scheme admits a good resolution of
singularities. It is now known, see | , Theorem 1.2.1], that all qe noetherian Q-
schemes admit resolution of singularities, and this resolution is given by a sequence
of blowings up with nonsingular centers, which is functorial in regular morphisms
of gqe schemes. Note that here we only require the morphisms to be regular, not
necessarily surjective. Furthermore, functoriality of this resolution implies that one
also gets a functorial way to resolve an arbitrary qe scheme (locally noetherian
but not necessarily noetherian) by a morphism fy: X’ — X. In general there is
no canonical factorization of fx into a composition of blowings up with regular
centers, but fx can be realized as an infinite composition whose restrictions onto
noetherian open subschemes of X are finite, see | , Theorem 5.3.2].

2.1.3. Positive and mized characteristics hypothesis. In Theorem 1.3.3 (3), the pre-
cise hypothetical statement we need about resolutions is the following analogue of
[ , Theorem 1.2.1]:

Hypothetical Statement 2.1.4. (1) FUNCTORIAL RESOLUTION: Fach noe-
therian ge F,, scheme (respectively, Z-scheme) X of dimension < d + 1
admits an ideal sheaf Jx whose blowing up X = X is a resolution of singu-
larities, in a manner functorial for reqular surjective morphisms X' — X,
so that X' = X' xx X.

(2) EQUIVARIANCE: Moreover, if G is a smooth group scheme of arbitrary
dimension, a : G X X — X an action and px : G X X — X the projection,
then Jx is G-equivariant: ¢~ 'Jx = p}l Jx.

In mixed characteristics we will also need:

(8) FUNCTORIALITY OF TOROIDAL CHARTS: For any monoidal chart j : Xp —
Y := Spec C[M] in the sense of | , Lemma 2.3.9 and Theorem 2.3.11],
we have j ' Jy = JX;, with Jy a monomial ideal.

The statement here, with a single resolving ideal sheaf Jx, differs from | ,
Theorem 1.2.1], which gives a sequence of blowings up. We will see below that a
sequence of blowings up can be transformed, functorially under surjective regular
morphisms, into a single ideal sheaf.

We note that the equivariance statement (2) in dimension (d + 1) follows from
statement (1) in dimension (d+ 1) +dim G, but here we wish to only make assump-
tions up to dimension d + 1. It is conceivable that a version of (2) sufficient for our
needs follows from (1) by taking slices, but we will not pursue this question.

Let us say that a scheme X is locally monoidal if locally it admits a logarithmic
structure making it to a logarithmically regular scheme. It is expected that there
should exist a canonical resolution of such schemes of combinatorial nature, which
is, in particular, independent of the characteristics. Our Statement (3) asserts such
independence in mixed characteristics; in pure characteristics it is a consequence of
equivariance. It is analogous to Hypothetical Statement 2.2.4(3) below. Similarly
to Hypothetical Statement 2.2.4, proving Statements (1)—(3) for locally monoidal
schemes is expected to be easier than the general case. For example, it is proved in
[ , Theorem 3.4.9] for logarithmically regular schemes (with a single logarithmic
structure), but known functoriality [ , Theorem 3.4.15] is not enough to extend
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it to locally monoidal schemes. In addition, very recently Buonerba resolved certain
locally monoidal varieties in [ ].

2.2. Principalization. In addition to resolution of singularities, we will need a
version of functorial principalization of coherent ideal sheaves on ge regular schemes
with boundaries.

We consider the category of triples (X, I, D) where X is a noetherian regular
qge scheme, [ is a coherent ideal sheaf, D C X a normal crossings divisor, and
arrows are regular morphisms f: X; — Xy such that f~'I, = I; and f~'Dy = D;.
Again we only require the morphisms to be regular, not necessarily surjective. A
principalization of I is a sequence of blowings up of regular centers ¢x: X — X,
which are the identity on the locus where I is the unit ideal, such that (;5;(1[ is
generated locally at every point by a single monomial in regular parameters. The
principalization is compatible with D if at each stage X; of the sequence forming
ox: X — X, the inverse image D; C X; of D is a normal crossings divisor, and
the new center of blowing up has normal crossings with D;. Principalizations
compatible with D form a category again, and functorial principalization provides
a functor from triples (X, I, D) to principalizations ¢x : X — X. As we do not
require the morphism f to be surjective, we have to use the equivalence relation
mentioned in Section 1.5. However, we will only apply the result in the context of
surjective morphism, so this equivalence will not figure in any of our applications.

Functorial principalization of ideal sheaves for wvarieties over a field of charac-
teristic 0 is known, see | , Sections 11,13], [ , Theorem 3.26]; it is in fact
compatible with an a-priori given normal crossings divisor D C X. The second
author is in the process of writing a general functorial principalization of ideal
sheaves on noetherian regular ge Q-schemes with the methods of | ]. Until
that becomes available we prefer not to use it. In the present paper we only need
principalization for ideals which are locally given as monomial ideals, in particular
the ideal is locally the pullback of a toric ideal through a morphism to a toric va-
riety. These belong to a class for which functorial principalization can be obtained
using the case of varieties and methods of | , Theorem 2.4.1, p. 95], as follows.

Hypothetical Statement 2.2.1. Principalization exists for qe schemes.'

A triple (X, I, D) is said to be Q-absolute if there exists an open covering [ [ U, —
X, regular Q-varieties Z,, regular morphisms f,: U, — Z,, ideal sheaves I, on Z,
and divisors D, C Z, such that f;'I, = I|y, and f;'D, = D|y, . The collection
of Q-absolute triples forms a full subcategory of the category of triples. Functorial
principalization of Q-absolute triples (X, I, D) compatible with D is a functor from
this subcategory to principalizations of the corresponding ideals.

The statement we need is the following:

Proposition 2.2.2. There exists a functorial principalization ¢x : X — X com-
patible with D of Q-absolute triples (X, I, D).

Proof. We may replace [[ U, by a finite covering, since X is noetherian. We write
Uap = Us xx Uz. Now, we will use the ideas from the proof of | , Theo-
rem 2.4.3].

L(Michael) Will add details later (dimensions, etc). Currently put this for referencing.
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First we construct a principalization. For this it suffices to construct a principal-
ization of [[(Ua, I|v,,, D|u, ) whose two pullbacks to the fiber product W := [ [ Uap
coincide. The triple (Z,1z, D7) := [[(Za, Ia, Do) has a principalization compatible
with D, coming from the principalization functor for Q-varieties. This pulls back
to a principalization of [[(Ua, I|u,,, D|y,, ) and we need to show that the two pull-
backs to W coincide. We have two regular morphisms f,g: W — Z. By Popescu’s

theorem (see [ ] or | 1), f is the limit of smooth morphisms f,: W, — Z.
By [ , IV3, Proposition 8.13.1], ¢ factors through a morphism g,: W, — Z
for a large enough ~ and then [ , Proposition 2.4.3] implies that replacing W,

by a neighborhood of the image of W we can achieve that g, is also smooth. Since
the two pullbacks of Iy and Dz to W coincide, there is some v such that the two
pullbacks of Iz and Dz to W, coincide. It follows by functoriality of principaliza-
tion for varieties that the two principalizations on W, coincide, and therefore they
coincide on W, as required.

We now demonstrate that this principalization is functorial. Consider a regu-
lar surjective morphism f: (X1, 1, D1) — (X2, Iz, D3) with coverings [[ Uy, and
[1 U2 and Q varieties Z1, and Zs,. Then composing Usg — Zsg with f we get an-
other covering || f ~!Usp with regular maps to Z38, so it is enough to show that the
resulting principalizations on X; coincide. We now write W = [[Un xx, f~Usp,
which maps to Z; = [[ Z14 and Z; = [] Za2p. By the same argument as earlier we
have that W — Z; X Z is the limit of a family W, — Z; X Z,, where the two maps
W, — Z; are smooth. As above we conclude that the ideals and divisors coincide
on some W, and the two principalizations coincide on W and therefore on X;. &

2.2.3. Positive and mized characteristics hypothesis. In Theorem 1.3.3 (3), the pre-
cise hypothetical setup and statement we need about principalization is the follow-
ing. A triple (X, I, D) with X regular, I an ideal sheaf and D a normal crossings
divisor is said to be locally monoidal if there is an open covering [[ U, — X, loga-
rithmically regular structures (U,, M, ) such that D is part of the toroidal divisor,
and monoid ideals I, C M, such that I;;, is generated by the image of I, under
M, — OU&'

Hyp:principalization‘ Hypothetical Statement 2.2.4. (1) Each locally monoidal Fp,-triple (respec-

tively, Z-triple) (X, 1, D) of dimension < d admits a principalization X —
X compatible with D, in a manner functorial for reqular morphisms X' —
X.

(2) Moreover, if G is a smooth group scheme of arbitrary dimension, a : G X
X — X an action and px : G x X — X the projection, and if I and
D are equivariant: o= 'I = p;(lf and a™'D = p;(lD7 then X — X is
G-equivariant as well.

Again in mixed characteristics we also need:

(8) FUNCTORIALITY OF TOROIDAL CHARTS: For any monoidal chart j : Xp —
Y := Spec C[M] in the sense of | , Lemma 2.3.9 and Theorem 2.3.11],

we have Xp = Xp Xy 17, withY — 'Y a toric morphism.

We remark that the results of | , Section 3.1.14] suggest that this statement
may be within reach: in that paper the local non-functorial problem is solved,
and the problem reduces to making the process functorial even if one changes the
logarithmic structure M, on U,.



ec:functorial-projective

Sec:projective—morphisms‘

FACTORIZATION OF BIRATIONAL MAPS FOR QE SCHEMES 9

2.3. Functorial constructions. In our method, it will be important to describe
certain morphisms we will obtain as blowing up of a concrete ideal or an explic-
itly described projective morphism, since further constructions will depend on this
data. Moreover, this should be done functorially with respect to surjective regular
morphisms. In the current section we develop a few basic functorial constructions
of this type.

There are few ways to describe a projective morphism: using Proj, using ample
sheaves, or using projective fibrations, but each approach involves choices. Neither
description is “more natural” than the others, and we will have to switch between
them. Similarly to [ , IT] we choose the language of projective fibrations to be
the basic one and we will show how other descriptions are canonically reduced to
projective fibrations.

2.3.1. Projective fibrations. Let X be a scheme. For a coherent Ox-module F
consider the projective fibration P(E) = Px(FE) := Projy Sym®(E) associated with
E. It has a canonical twisting sheaf Op(g)(1), and £ — m,O(1) is an isomorphism.
This construction is functorial for all morphisms: if ¢: X’ — X is any morphism
and E' = ¢*E then Px/(E') = X' xx Px(FE), and Op(g(1) is the pullback of
Op() (1)

2.3.2. Projective morphisms. By the usual definition | , I1, 5.5.2], a morphism
f:Y — X is projective if it factors through a closed immersion i: Y < Px (FE) for
a coherent Ox-module E. In this paper, we will use the convention that by saying
“f is projective” we fix E and 7. In particular, Y acquires a canonical relatively
very ample sheaf Oy (1) = Op(g)(1)]y .

2.3.3. Relation to Proj. For a projective morphism f:Y — X we also obtain a
canonical description of Y as a Proj. Namely, if Iy C Op(g) denotes the ideal
defining Y then Y = Projy A, where A® = Sym®(F)/Ip is a quasi-coherent O x-
algebra with coherent graded components, generated over A = Ox by its degree-1
component A'. Again this structure is functorial for all morphisms: if ¢: X' — X
is any morphism and A’ = ¢* A then Projy, A’ = X’ x x Projy A.

Conversely, if a graded O x-algebra A® has coherent components and is generated
over A = Ox by A! then Sym®(A!) — A® and we obtain a closed immersion
i: Projy A — Px(A!). Thus, Y = Projy A is projective over X, and the associated
graded quasi-coherent algebra is A itself. This construction is also functorial for all
morphisms.

Remark 2.3.4. We note that the construction of a projective morphism from Proj
is right inverse to the construction of Proj from a projective morphism, but they
are not inverse: going from a projective morphisms to Proj and back to a projective
morphism one usually changes the projective fibration.

Remark 2.3.5. In this paper we use superscripts to denote degrees of homogeneous
components of a graded object, as in A* C A®. When considering weights of a given
G,p-action we will use subscripts. We hope this will not cause confusion.

2.3.6. General Proj. Consider now a general quasi-coherent graded Ox-algebra
with coherent graded components, which is only assumed to be generated over
Ay = Ox in finitely many degrees. Writing AM® = @;AMJ for a positive integer
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M, we have a canonical isomorphism Y = Projy A® ~ Projy AM*. For a suitable
M the algebra AM* is generated in degree 1 by AM. If we take the minimal M,
such that AM® is generated in degree 1, then L is not functorial for all morphisms.
Rather it is functorial for all flat surjective morphisms X’ — X: if AM® is generated
in degree 1 then (A’)M* is generated in degree 1, and the opposite is true whenever
X' — X is flat surjective; this follows since surjectivity of ((A4’)})®" — (A")" im-
plies surjectivity of (A1)®™ — A" by flat decent. Combining this construction with
the previous one we obtain an interpretation of Y — X as a projective morphism,
and this construction is functorial for all flat surjective morphisms.

Remark 2.3.7. This construction applies to the following situation: assume f: Y —
X is a proper morphism of noetherian schemes and L is an f-ample sheaf. Then

A* =0x o P, /- (LF) is generated in finitely many degrees and Y = Projy A.

Therefore, L gives rise to an interpretation of f as a projective morphism functo-

rially for all surjective flat morphisms.

2.3.8. Blowings up. An important variant is that of blowings up. Consider a coher-
ent ideal sheaf I on X. The Rees algebra Rx (I) = 69?:0]’“ is generated in degree
1, and we define Bl;(X) = Projy Rx(I). In particular, Bi;(X) is projective over
X with the closed immersion Bl;(X) < Px(I). If ¢: X’ — X is a morphism, then
I*Ox: = (I0x/)* = (I")* and ¢*(I*) — I*Ox/ is surjective, giving a canonical
morphism ¢’ : Bl (X’) — Bl;(X) over ¢. Clearly (¢')*L = L'. So a blowing up is
functorially projective. If moreover X’ — X is flat, then Bip (X') = X' xx BlxI.

We will need an opposite construction, using a variant of | , Theorem
I1.7.17] for regular schemes. Assume X is regular and f:Y — X is a proper
birational morphism with an ample sheaf L (e.g., if Y — X is projective we can
take L = Oy (1)). Then after replacing L by a positive power which is functorial
for flat surjective morphisms, we have that Y = Projyx A®, where A® is generated
over Ay = Ox by its degree-1 component, and A* = f,L*.

Locally on X, write L* as a fractional ideal on Y, giving it as a fractional ideal
Fr . on X since Y — X is birational. Since A® is generated in degree 1, we have
that Ff, . = F | (see [ , Theorem I1.7.17 Step 5]). Since X is factorial, there
is a unique expression Fr; = MI, where M is an invertible fractional ideal and
I'is an ideal sheaf without invertible factors. Explicitly, F7 ; is invertible, so we
can write [ = Fy 1 Fp 1 and M = F7%. It follows that Fp , = MP¥I*. Note that
while the construction is local on X and depends on an embedding of L in the
fraction field, the ideal sheaf I glues canonically. Locally on X we have a canonical
isomorphism Y ~ Bl;(X), which evidently glues canonically. We have obtained
that a projective birational morphism f: Y — X with X regular is a blowing up,
functorially for flat surjective morphisms X’ — X of regular schemes.

For future reference we record the following well known result that follows from
the universal property of blowings up.

Lemma 2.3.9. If X is an integral scheme and a blowing up ¥ = Bl;(X) — X
factors through a proper birational morphism Z — X then'Y = Bljp,(Z).

2.3.10. Sequences of projective morphisms. Now assume Z Sy i> X is a sequence
of projective morphisms of noetherian schemes, say Z < Py (F) and Y — Px(E)
for a coherent Oy-module F' and a coherent Ox-module E. For a large enough
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n the map f*f.(F(n)) = F(n) is surjective, hence Py (F) = Py (F(n)) embeds
into Px(F ® f.F(n)) and we obtain a closed immersion Z — Px(E ® f.F(n)).
Choosing the minimal n such that « is surjective we obtain a construction that
realizes composition of projective morphisms as a projective morphism functorially
for flat surjective morphisms X’ — X.

If X is regular we can combine this with the previous statements, so if Y,, —
-+ = Y7 — X is a sequence of blowings up we have that Y,,, — X is a blowing up
of an ideal sheaf, functorially for flat and surjective morphisms of regular schemes.

Remark 2.3.11. We will not use this, but blowings up can also be composed
in terms of ideals. One can show that if X is normal then the composition of

Y = BIl;(X) 4y X and Bl;(Y) — Y is of the form Bl (y-1(n)(X) — X for a
large enough n.

3. FUNCTORIAL TOROIDAL FACTORIZATION

3.1. Statement. We follow the treatment of toroidal schemes in [ , Section
2.3], in particular they carry logarithm structures in the Zariski topology. A toroidal
ideal I on a toroidal scheme X with logarithmic structure M is the ideal generated
by the image of a monomial ideal in M through M — Ox. We define a category
TorBl,s of toroidal blowings up, similar to Bl:

(1) An object is a birational transformation X; — X3 where X7, X5 are toroidal
and regular, and X; — X5 is given as the normalized blowing up of a
toroidal ideal I C Oy, .

(2) An arrow from X; — X} to X; — X, consists of a regular surjective
morphism g : X5 — Xy, such that Uy, = ¢ 'Ux, and I' = 10x;.

We similarly define a toroidal weak factorization X1 = Vo --» Vi --» ... --»
Vi_1 --+ V; = X5 of a toroidal blowing up X; — X5, where the schemes V;, ideals
J; and centers Z; are toroidal. These form the reqular surjective category TorFact,g
of toroidal weak factorizations in a manner similar to the above.

Proposition 3.1.1. Let X1 — X3 be a toroidal morphism of toroidal schemes
obtained by normalized blowing up a toroidal ideal. Then there is a toroidal weak
factorization X1 =Vy --» Vi -=» ... -=» V1 -=» V; = X5 in a functorial manner:
there is a section TorBl,; — TorFact,s of the forgetful functor TorFact,s — Bls.

Remark 3.1.2. Jarostaw Wlodarczyk informed us that one can prove a stronger
result: a factorization procedure which is functorial for all regular strict morphisms
g : X5 — X5, not required to be surjective. His proposed argument involves subtle
modifications at the heart of the algorithm in | , Sections 4 and 5]. The proof
we provide at the end of this section shows that any procedure for toric factorization
gives rise to a functorial procedure.

3.2. Cone complexes. Before proving Proposition 3.1.1 we need to discuss a gen-
eralization of the polyhedral cone complexes with integral structure of | ]
which was introduced in | , 2.5] to accommodate any toroidal embedding in
the sense of | ], allowing for self intersections and monodromy. In this
paper we only assign polyhedral cone complexes to Zariski toroidal schemes, with-
out self intersections or monodromy, but the generalized polyhedral cone complexes
are used as a combinatorial tool to achieve functoriality.
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Fix a toroidal scheme X. Recall that the polyhedral complex of | ]
or the equivalent Kato fan of | | assigns a polyhedral cone oz with integral
structure to each toroidal stratum Z C X; each inclusion Z’ < Z C X gives rise
to a linear map v : oz — o0z, which identifies o7 as a face of oz in such a way
that the integral structure on oz is the restriction of the integral structure of oz :
this is called a face map. We define 3(X) = lig({oz}, {v}) - it is similar to the fan
of a toric variety, but is not embedded in a space Ng and the intersection of two
cones may be the union of faces rather than just one face.

A map of polyhedral cone complexes lim({o7}, {v;,}) — Lim({o;}, {r1}) is defined
to be a collection of cone maps o; — 0,(;) compatible with the face maps v, and
V. A toroidal map X' — X gives rise to a map of cone complexes; here are a few
well known relationships:

(1) A proper birational toroidal morphism gives rise to a subdivision, and there
is an equivalence of categories between proper toroidal birational morphisms
and subdivisions. Blowings up of ideals correspond to subdivisions deter-
mined by piecewise linear continuous integral functions which are convex
on each cone; following | ] we call these projective subdivisions (in
the combinatorial literature they are coherent subdivisions).

(2) A regular morphism g : X} — X5 such that Ux, = ¢~ Uy, gives rise to a
map of complexes ¥(g) : £(X') — X(X) where all the maps o — 0(;) are
face maps - this is called a face map of complexes.

(3) If the map g : X5 — X5 is also surjective then ¥(g) is surjective.

(4) The scheme X is regular if and only if all the cones o; C (X)) are nonsin-
gular in the usual toric sense.

(5) If X is regular then the closure of a stratum is always regular (this would fail
if we allowed self intersections); we call such subschemes toroidal centers.

(6) The blowing up X’ — X of an irreducible toroidal center Z on a regular
X corresponds to the star subdivision ¥’ — 3(X) at the barycenter of 0.
The blowing up X’ — X of any regular toroidal subscheme W corresponds
to the simultaneous star subdivision ¥’ — 3(X) at the barycenters of all
the cones corresponding to the connected components of W.

Thus proposition 3.1.1 would follow if the projective subdivision ¥(X;1) — 3(X2)
can be factored as a composition of such simultaneous star subdivisions and their
inverses, in such a way that the intermediate steps are projective subdivisions of
3(Xs), in a functorial manner with respect to surjective face maps. This will be
our Lemma 3.5.1 below.

Morelli’s m-desingularization lemma of fan cobordisms | , Lemma 10.4.3]
gives a non-functorial result in the case of fans; this was generalized in | ]
to polyhedral cone complexes. In | ] it is made functorial under automor-
phisms, which is not sufficient for our purposes here.

Consider the category whose objects are projective subdivisions ¥; — ¥, of
nonsingular cone complexes given by a fixed piecewise linear continuous integral
function f: X3 — R convex on each cone and arrows (X4, f') = (X, f) induced
by surjective face maps h : X§ — ¥ with f/ = f o h. Functoriality would be
easily achieved if the connected component of any object ¥; — ¥4 in this category
had a final object, as we show below in Lemma 3.5.1. Indeed, this would mean
that applying Morelli’s lemma to the final object would induce a factorization for
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the whole component, giving the result. Unfortunately final objects usually do not
exist in the category of cone complexes. Our next goal is to enlarge this category
so that final objects do exist, see Lemma 3.3.1 below.

3.3. Generalized cone complexes and existence of final objects. A gener-
alized cone complex is given by any finite diagram ({o,},{»}) of cones and face
maps. We allow for more than one face map o; — oy, including non-trivial self-
face maps 0; — o0;. We think of a generalized cone complex ¥ as a structure
imposed on the topological space ¥ = HA’I({UJ'L {v;}). Thus an arrow of general-
ized cone complexes ({o}},{r,.}) = ({o,},{w}) is given by compatible cone maps
as above; an arrow is a face map if it is given by compatible face maps; and an
arrow is declared to be an isomorphism if it is a face map inducing a bijection of
sets im ({0}, {v}) — lim({o;}, {n1}).

Cone complexes are a full subcategory of generalized cone complexes. They are
distinguished by the property that, for any cones 7,0 of ¥ a face map v : 7 — o in
¥ is unique if it exists. Thus proposition 3.1.1 would again follow if any projective
subdivision ¥; — Y5 of generalized nonsingular cone complexes can be factored as
a composition of simultaneous star subdivisions and their inverses, in a functorial
manner with respect to surjective cone maps. The advantage of working with
generalized cone complexes is the following:

Lemma 3.3.1. The connected component of the projective subdivision 37 — 3o of
generalized cone complexes in the category induced by surjective face maps X5 — ¥
has a final object.

Proof. The projective subdivision ¥; — X is induced by an implicit piecewise
linear convex integral function f : ¥ — R. Write ¥y = ({o,},{w}). Then
vy : 0; — oj has the property that f,, = f5, ov. Let {up} be the collection
of all face maps pi : 0, — 0, with the property that f, = fs, o . Then
A = ({oj},{pr}) is a generalized cone complex, the maps f,, glue to give a
piecewise linear integral function f : A — R, and since {1} C {uz} we have a map
of diagrams ¢ : ¥ — A such that f = fog.

It is convenient to have another presentation of A. Choose one representative &
from each isomorphism class of cones in A. Given two such representatives 7 and &,
consider all maps 7 : 7 — & in A. Clearly A = ({5}, {}) maps as a subdiagram
to A, and the map is an isomorphism since it is clearly a bijection on set theoretic
limits.

We claim that (A, f) is a final object in the component of (Xq, f) in the category
of generalized cone complexes with piecewise linear integral function. For this it
suffices to show that if (X4, f') is an object and h : X — X is a surjective face
map such that f'oh = f then g = ¢” o h where ¢’ : ¥}, — A is a morphism so that

f'=Fog".
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First, if we apply the construction of A to 3} we get a map ¢’ : ¥y — A’ which
sits in a commutative diagram

Sy s A

S A
g

On the other hand A ~ A and A’ ~ A/, and the map A — A’ induced by h
is an isomorphism of diagrams: since h is a surjective face map, any cone in X is
isomorphic to a cone of ¥; via an isomorphism compatible with f and vice versa.
So h gives a bijection between the isomorphism classes of cones, and the maps ©
between cones are determined by the compatibility of the function f = f’ on them.
So A — A’ is an isomorphism, giving the requisite map of generalized complexes
q' = h—1o q. &
3.4. Barycentric subdivisions and factorization for generalized cone com-
plexes. We proceed to extend the factorization of subdivisions of cone complexes
to generalized cone complexes. We do it by a reduction step using barycentric
subdivisions:

Lemma 3.4.1. (1) (| , 2.5]) The barycentric subdivision B(A) of a gen-
eralized cone complex A is a projective subdivision obtained by a sequence
of simultaneous star subdivisions. If A is nonsingular then the star subdi-
visions are smooth. The generalized cone complex B(A) is in fact a cone
complezx.

(2) (| , Lemma 8.7]) The barycentric subdivision B(A) of a nonsingular
cone complex A is a projective subdivision obtained by a sequence of simul-
taneous smooth star subdivisions. The nonsingular cone complex B(A) is
in fact isomorphic to a fan.

Proof. (1) Write A = ({0}, {pr}). We need to show that if 75,05 are cones
in B(A), then a face map 75 — op in B(A) is unique if it exists. Suppose
the minimal cone containing the image of 75 is 7 and the corresponding
cone for op is 0. Then it suffices to show that the restriction to 75 of
a face map ¢ : 7 — o in A carrying 7 into op is unique if it exists.
We can write op = (b(oy,),...b(0;,)) uniquely as the cone generated by
the barycenters b(o;.) of faces o;. of o of dimensions i; < --- < 4, and
similarly 75 = (b(7j,),...b(7;,)). So ¥ must carry b(7;,) to the barycenter
of a cone of ¢ of dimension j,, in other words ¥(b(7;,)) = b(g;,). Since
{b(75,),...,b(7;)} span 7 this means that the restriction of ¢ is unique if
it exists.

(2) Consider the vector space V' = @ ., R, with one basis element for each
cone of o. Assume A is a cone complex. In [ , Lemma 8.7] it is
shown that B(A) has a real embedding in V, and the image is the real
support of a fan. The embedding is obtained by sending b(c) to the unit
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vector e, € R, C V. Here we assume that A is nonsingular, and we need to
check that the embedding gives an isomorphism of cone complexes, namely
that the integral structures coincide. Note that the lattice in any cone
(b(c4,),...,b(0y,)) in B(A) is generated by the elements b(c;,),...,b(0;, ).
The image of this lattice in V' is precisely generated by e(oy,),...,e(0:,),
and coincides with the intersection of the cone (e(cy,),...,e(0;,)) with
@D,ca Zo- So the image of B(A) is indeed a fan, as required.

&

Lemma 3.4.2. Let A be a nonsingular generalized cone complex and f : A — R
a piecewise linear function, convex and integral on each cone, such that the corre-
sponding subdivision A1 — A is nonsingular. Then A1 — A admits a factorization
into nonsingular star subdivisions and their inverses, with all intermediate steps
projective over A.

Proof. By Lemma 3.4.1 we may replace A by its second barycentric subdivision, so
we may assume A; is isomorphic to a fan. The common subdivision of B(B(A1))
and B(B(A)) is a projective subdivision of B(B(A1)), so there is a sequence of
star subdivisions A} — B(B(A7)) such that A} — A factors through a projective
subdivision A} — A’ := B(B(A)). Since A’ is isomorphic to a fan and A] is
a projective subdivision, Morelli’s 7 desingularization lemma applies, see | ]
or [ , Lemma 10.4.3], giving a factorization by star subdivisions and their
inverses, all projective over A’. Combining these transformation, we obtain the
desired factorization, with all steps projective over A:

A,l factorized s A/

star su}?ision sequence \

B(B(A1)) B(B(A))
star subdivision sequence star Sub\iVlSiOIl sequence
A A

projective subdivision

3.5. Functoriality for generalized cone complexes.

Lemma 3.5.1. The factorization in Lemma 3.4.2 can be made functorial for sur-
jective face maps: we can associate to (A, f) a factorization so that, given a sur-
jective face map ¢ : X — A, the factorization of (3, f o ¢) is the pullback of the
factorization of (A, f) along ¢.

Proof. For each connected component of the category of pairs (A, f) with face maps
between them choose a final object (A, f). By Lemma 3.4.2 there is a factorization
Ay =5 ... —=> A of (A, f). Given an arbitrary (A, f) it has a morphism ¢a : A —
A to the final object (A, f)7 so that f = fowa. The pullback Ay --» ... --» A of
Aj --> ... --» A along 1 is a factorization of (A, f), and its pullback along ¢ is
simply the pullback ¥; --+ ... --» ¥ along ¥a o ¢ = ¥y of Ay -=» ... =5 A, so
the process is functorial. &
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3.6. Functoriality for toroidal factorization.

Proof of Proposition 3.1.1. The toroidal morphism X; — X5 corresponds to a sub-
division X(X;) — ¥(X32) induced by a piecewise linear function f : ¥(X3) — R
convex and integral on each cone. This is functorial: a surjective regular mor-
phism X} — X, gives rise to a surjective face map ¢ : 3(X3)" — X(X3) such that
X1 — XJ, corresponds to f o ¢.

By Lemma 3.5.1 we have a factorization X(X7) --» ... --» X(X>), functorial for
surjective face maps, into nonsingular star subdivisions and their inverses, with all
intermediate steps functorially projective over 3(X5s). This gives rise to a toroidal

factorization X; --» ... --» X5 into blowings up and down, which is functorial for
surjective regular morphisms, where the terms are functorially projective over Xs.
&

4. BIRATIONAL COBORDISMS

A key tool in the factorization algorithm is the notion of birational cobordism,
introduced in [ ], where it is motivated by analogy with Morse theory. In this
paper we adopt the approach of | ] which relies on Geometric Invariant
Theory and variation of linearizations, see | , , ]

4.1. Geometric Invariant Theory of P(E). Given a nonzero coherent sheaf
on Xy, the data of a G,,-action p : G,;, — AutE on E is equivalent to the data of
a Z-grading F = ®,¢czF,, which is necessarily a finite sum: E = GBZZZ’;.;“ FE,. The
homogeneous factor F, is characterized by

p(thv = t'v Yuv € E,.

Here and later we use the informal notation v € FE, to indicate that v is a local
section of E,. Given such data, there is a resulting action of G,, on Sym®(E) and
a linearized action on P(F) = Py, (F).

We require the following:

Assumption 4.1.1. The sheaves E,,, and E,,_,,
P(E,,,) — X2 and P(E, . ) — X2 are surjective.

are EUET’lehe’I"E nonzero, So

Given an integer a viewed as a character of G,,, we define a new action of G,,
on E by

palt) = £ p(t)(v).

This induces an action on Sym®(E) and on (P(E), Op(g)(1)) which we also denote

by pa. Writing (Sym®(F))?= for the ring of invariants under this action, we denote
P(E) JuGn = Projy, (Sym®(E)).

As customary, we unwind this as follows: we define the unstable locus of p, to
be the closed subscheme

(1) P(E)™ = P(@Eb> | ] P(@Eb>,

b<a b>a
and the semistable locus to be the complementary open

P(E)S = P(E)\PE)"

a °

We have the following well-known facts:
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Lemma 4.1.2. (1) The semistable locus P(E)> is nonempty precisely when
Gmin S a S Omax -

(2) Consider the rational map q, : P(E) = P(E) /o Gy, induced by the inclusion
(Sym®(E))P« C (Sym®(E)). Then q, restricts to an affine Gy, -invariant
morphism P(E)$" — P(E) /o G, which is a submersive universal categor-
ical quotient, thus P(E) [o G = P(E)S )| G,y.

(3) For amin < a1 < az < amax we have P(E)S C P(E)SY precisely when

Proof.

@

@' E, = 0, and similarly P(E St D P(E)E precisely when @

ay

E,

ay a=ai1+1

0. In particular P(E)3t = P(E)3 precisely when @2, E, = 0.

a=ay

(4) If amin < a1 < ag < amax and EBaz ! E, =0, then the inclusion IE”(E)bbt -

P(E);

Similarly if @52

sst

oy Induces a projective morphzsm

( )bst//G —)P( )»t//G

aea,+1 Pa = 0 we have a projective morphism

( )sst//G (*P( )sst//G

(1) We have a < amax if and only if P(D,_, Ep) # P(E), and amin < @

if and only if P(PpsqEs) # P(E).

2) (a)

AFFINE COVER OF THE QUOTIENT. The scheme P(E) /., G,, =
Projy, (Sym®(E))?= is covered by principal open sets

DY := (P(E) [la Gm) ~ Zpg) /G (f)
associated to non-zero homogeneous invariant elements of the form
f =111 f; where f; € Eqy5; with 3-d; = 0.
COMMON ZERO LOCUS OF {f}. We note that the common zero locus
of elements of E. is P(E/E.) = P(®,,. E»). Now observe that any
element f = H;Zl f; as above has a factor f; with §; > 0 and a factor
f; with ¢; < 0. This means that f vanishes on P(,_, E3) and on
P(D,~, Eb), so [ vanishes on P(E);"
Conversely if x ¢ P(E)2" then we have some coordinates f1 € Fq4s,,01 <
0 and fo € Fqys,,02 > 0 which do not vanish: f;(z) # 0 # fo(x). Tak-
ing any positive r, s so that rd; + sd2 = 0 we can form f = f] f5, and
f(z) # 0. This implies that the common zero locus of the elements
f=1Ij=1 f; above in P(E) is precisely P(E);".
COMPATIBLE AFFINE COVER OF P(E)*'. Tt follows that P(F)S' is
covered by principal open sets

Df = IP(E) AN ZIP’(E)(f),

the inverse image of the affine open D?c of equation (2) is the affine
open Dy of equation (3), and P(E)¥* — P(E) /4 G, is an affine
morphism.

COORDINATES AND INVARIANTS The coordinate ring of D? is the
degree-zero component of (Sym®(E))?=[1/f], which is the p,-invariant
summand of the degree-0 component of (Sym®(E))[1/f]. The latter
is the coordinate ring of D¢. In particular, D? = Dy /) G, is a sub-
mersive universal categorical quotient, see | , Lemma 4.2.6 and
Corollary 4.2.11]. It follows from the definition (see | , Remark
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5, p. 8]) that P(E)$* — P(E) /o G, is a submersive universal cate-
gorical quotient.

(3) The situation is symmetric, so we only address the first statement. If
@Ziﬁ E, = 0 then P(D,_,, Ebv) = P(Dy,, Bb) C P(E);" and certainly
P(@b>a2 Ey,) C P(@b>a1 Ey) CP(E)YY, so P(E)" C P(E),) as needed.

Conversely, if v € P(@*" E,) over z € X, and we take w € P(E,,,,)

a=aq

also over z, then either v € P(E,,) C P(E)3" or else (v +w) € P(E)3*. In

a1

either case, if @22:;1 E, # 0 we have P(E)3" ¢ P(E)3, as needed.
(4) The situation is symmetric, so we only address the first case, where apin <
a1 < az < amax and G221 E, =0, so that P(E)SF C P(E)S by (3). Since
P(E)$t — P(E) /a, G, are categorical quotients, we have a canonical

a;
morphism ¢, /4, making the following diagram commutative:

P(E)sst C P(E)SSt

a1l az

| |

P(E) //a1 Gm ol P(E) //a2 Gm

But P(E) /4, Gy, are projective over Xo, hence ¢q, /4, is projective.

&

This lemma gives the familiar “wall and chamber decomposition” of the interval
[@mins Gmax) in the character lattice Z into segments where the quotients P(E)3* /¢,
are constant.

All the constructions above are compatible with arbitrary morphisms X} — Xo,
except that the values of ayin and amax and the ample sheaf for ¢,, /4, are only
compatible with surjective morphisms X4 — X,.

Remark 4.1.3. One can show that the quotient morphism P(E)$t — P(E)5t /G,
is in fact universally submersive. If in addition F, = 0 it can be shown that the
quotient morphism is a universal geometric quotient P(E)3* — P(E)5'/G,,,. These
facts follow from [ , Theorem 1.1 and Amplification 1.3], which are stated
for schemes over a field in characteristic 0 but apply here since G,, is a linearly
reductive group-scheme over Z. Since we do not need these facts, we will not provide
a detailed proof, though we will use the notation P(E)*"/G,,, when E, = 0.

4.2. Geometric Invariant Theory of B C P(FE). Continuing the discussion,
let B C P(E) be a closed reduced G,,-stable subscheme. It is the zero locus
of a homogeneous and G,,-homogeneous ideal Iz C Sym®*E. We define Bi" :=
BNPE)™ and B3 := BN P(E)$. The image of ¢, : B — P(E) /o G
is denoted B /4 G;,. We have canonically B //, G, = Projy, ((Sym*E/Ip)").
We write amin(B) = min{a | BNP(E,) # 0} and similarly amyax(B) = max{a |
BNP(E,) # 0}. We deduce the analogous, still well-known, facts, which follow
immediately from Lemma 4.1.2:

a < Gmax(B).
(2) The map qq : BS' — P(E) JJo Gu, is an affine Gy, -invariant morphism,
inducing a categorical quotient BS* — B3 | G, = B [/ o G-

(1) The semistable locus BS' is nonempty precisely when amin (B)

<
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(8) For ay < ag we have BE' C B precisely when B NP(®32,'E,) =0, and
similarly B3 D Byt precisely when BNP(Dg2, 1 Ea) = 0. In particular
Bt = B3 precisely when BNP(®42, Eq) = 0.

(4) If a1 < ag and BNP(&22, E,) = 0, then the inclusion B C B in-
duces a projective morphism B | Gy, — B | Gy, Similarly if BN

P(®52,,+1Fa) = 0 we have a projective morphism B3 | Gy, < B3 [ Gy,

az

This time we obtain a “wall and chamber decomposition” of the interval [amin(B), Gmax(B)]-
We denote the “walls”, namely the values of a for which B N P(E,) # 0, by
amin(B) = ag < a1+ < @y = Gmax(B).

By replacing the embedding B C P(E) by the Veronese re-embedding B C
P(Sym®FE) we may, and will, assume

Assumption 4.2.2. a; +1 < a;41.

We denote B3, = B3, and B = B3 |, and note that B, = B3

a;—1° ait1—"
Assumption 4.2.2 implies that now we always have projective morphisms ¢g;+:

(4)  BE /G- =% - =3B G =B, G,
- /G e B, /G
a; m it "

Finally, we will assume the following:

Assumption 4.2.3. Each irreducible component of B meets both P(E,_, (p)) and
P(Egpan(B))-

Under this assumption the quotients B5* / G,, are all birational to each other,

as long as amin(B) < @ < amax(B). For the extreme values we have isomorphisms
BNP(E,,.(B) — BZ?:;H(B) / Gm and BNP(E, (B)) — BZjax(B) J G
Remark 4.2.4. As in Remark 4.1.3, it can be shown that B5' — B5' [ G,, is
universally submersive, and if BNP(E,) = () we have a universal geometric quotient
Bsst N BSSt/Gm.

4.3. Definition of a birational cobordism. The notion of a birational cobor-
dism for a blowing up we use in this paper extends the notion of compactified
relatively projective embedded birational cobordism of | , 2.4] by allowing a
non-empty boundary. Ignoring the issue of the boundary, it is far more restrictive
than the notion introduced in [ ]

Let ¢: X7 — X5 be an object of Bl,s. A birational cobordism for ¢ is a scheme
B which is the blowing up of a G,,-invariant ideal on IP%Q, and embedded, in a
manner satisfying Assumptions 4.2.2 and 4.2.3, as a G,,,-stable subscheme in P(F)
for a G,,-sheaf F on X5, such that

(1) X{ =B /G, = B3 /| Gy, is obtained from X, by principalizing D1,

(2) X5 = By _ /Gy, = B3 | G,y is obtained from X by principalizing Dy,
and

(3) the following diagram of rational maps commutes:
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(Ia
Bt — X —— Xy

I
8 Js
Qam

1
Byt Iy X X,

Am
where « is the birational map induced by the open dense inclusions
t t
By C BD B .
The birational cobordism is said to respect the open set U C X5 if U is contained
in the image of (B, N By' )/Gy,. This happens whenever the ideal on P,
whose blowing up is B restricts to the unit ideal on ]P’%]. We say that a birational

cobordism B of ¢ is regular if B is regular and the preimage Dg of Ds is a simple
normal crossings divisor.

4.4. Construction of regular birational cobordism. We claim that one can
associate a regular birational cobordism to any blowing up in Bl functorially, and
we formalize this claim as follows. There is an evident category Cob,s of regular
birational cobordisms of blowings up ¢: X; — X5 in Bl,s, with an evident forgetful
functor Cob,s — Bl,s. A morphism of regular birational cobordisms B’ — B is
uniquely determined by a regular surjective morphism g: X} — Xo.

Proposition 4.4.1. The functor Cob,s — Blys has a section Bl,s — Cob,s.
We provide a sketch of proof here, and more detail in Appendix A.

Sketch of proof. Following the construction of | , Theorem 2.3.1], consider
the blowing up of the ideal I ® O[P%( + Ijoy. This is a birational cobordism B; for
2

¢, but it is singular. We apply canonical resolution of singularities to By, which
is a functorial sequence of blowings up B™® — B: see Section 2.1.2, where in
positive and mixed characteristic we may use Hypothetical Statement 2.1.4 since
dim By = dim X5 + 1. Then we principalize the preimage of Dy in B™® by a
blowing up sequence B — B™8_ obtaining a regular birational cobordism (B, Dg)
for ¢. The last step is non-trivial only when D5 # () and then, in the positive and
mixed characteristic, it involves Hypothetical Statement 2.2.1. &
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5. FACTORING THE MAP

Throughout this section “functorial” means “functorial in X; — X5 with respect
to surjective regular morphisms”. By total transform of a divisor D C X under a
(normalized) blowing up Bl;(X) — X we mean the union of the preimage of D
and the total transform of J.

5.1. Blowing up the torific ideals.

5.1.1. Initial factorization. Proposition 4.4.1 provides a functorial birational cobor-
dism (B, Dp) of ¢. Departing slightly from the notation of | , Theorem
2.6.2], we write Wi+ = B3> /Gy, and W; = B3* |/ Gy, Since Wiy ~ W;pq)— we
have a functorial factorization

(5) Wy Wi

Wy
7NN YT

X =W, Wy = X

with all terms functorially projective over X,. Since the cobordism is compatible
with U, the morphisms W;+ — X5 and W; — X5 and hence also the morphisms
;+ are isomorphisms on U. Note that since W,,,_1 --+» W,,, is a morphism it follows
that ©(,,—1)4 is an isomorphism, but this fact does not feature in our arguments.
In general the terms W; and W=+ in this factorization are singular, but we will use
them to construct a non-singular factorization.

5.1.2. Torific ideals. Let D; C W;, Dix C Wiy, D,, C stit and Dg,+ C Bffti
denote the preimages of Dy. We will show how main results of | ] imply
that since (W;, D;) is given as a quotient of (B3, D,,), it can be made toroidal
by a canonical torific blowing up. Since B is regular and Dpg is a simple normal
crossings divisor, (B3, D,, ) is a toroidal scheme with a relatively affine G,,-action.
In | , Section 4.2] one functorially associates to (B, D,,) a G,,-equivariant
torific ideal JP on B, We define ideal sheaf J; on W; to be the G,,-invariant part
of JP, and we call it the invariant torific ideals. By abuse of language, the ideal
sheaves J;+ = J;Ow,, will also be called invariant torific ideals.

Theorem 5.1.3. For every 1 < i < (m — 1) the ideal sheaves J; and J;1+ are
functorial and restrict to the unit ideal on U. Furthermore, let W' = Bl; W;*
and W = Bl;,, Wiy, and denote by D" C W' and DI C W[ the total
transforms of D; and D;4, respectively. Then

(1) (Wfer, DY) and (W, D) are toroidal, and

(2) the morphisms ;1 induce toroidal morphisms

o s (Wi D) — (W1, DL)
that restrict to isomorphisms on U.

Proof. By | , Lemma 4.2.12] G,, acts in a relatively affine way on B{>" :=
Bl;s(Bg"). Let D" C B be the total transform of D,,, then by [ ,
Theorem 1.1.2], (B, D{") is a toroidal scheme with toroidal action of G,,, and

2(Michael) In fact this should be normalized blowing up. I don’t change this now, since we

may want to switch to blowings up in the end, using the normalization/saturation trick.
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Wit = B | G,,. Note that Dj°" is the image of D", hence (W ', D{°") is
toroidal by [ , Theorem 1.1. 3]

By | , Lemma 4.2.14], W' = (BY")+ /| Gy Set (D) + = Dt0r|(Btor)i7
then G, acts toroidally on ((B")+, (D)4 ) and hence the quotient (W;¢", t01“) is
toroidal by | , Theorem 1.1.3]. Note also that ¢;+ induce toroidal morphisms
O by | , Proposition 3.3.14].

Functoriality of JZ-B implies that J; and J;+ are functorial too. Note also that
JB is the unit ideal over U, as it is generated by monomials in semi-invariant
coordinates along the fixed point set, and these coordinates are units over U. Since
X is a qe scheme, normalization is finite. So Bi>* — B is functorially projective.?

&
We note that in general I/Vit"r #* Wtzoil)f. The steps W, — W,; < W, in the
factorization (5) now look as follows:
tor tor
(6) Wif gpz'ir @23} Wi+
/ h \
Witor
W(i_l)—i_ B Wi7 &} J’ So/Jr Wi+ B W(i"l‘l)_
W;
Remark 5.1.4. In | , Lemma 3.2.8] it is stated with a sketch of proof
that the ideals J; can be chosen so that '™ are isomorphisms. We will not use this
statement. We note however that this follows from | , Theorem 3.5]: if the

[-torific ideal I; generates all Ip;;, M > 1 and also I_; generates all I_,;, M > 1,
then once [, —I € S;, the ample set of characters on BSSt used to determine J£ in

[ ], then ¢! are isomorphisms. One can choose such [ in a manner functorial
for regular surjective morphisms.

5.2. Tying the maps together.

5.2.1. Canonical resolution and principalization. Extending | , Section
4.2] to ge schemes with a boundary, we write W}¢* — W;. for the composition
of the canonical resolution of singularities W/, — Wi and the canonical princi-
palization W/§® — W/, of the preimage D;, of Dy in W/, see Sections 2.1.2 and
2.2; in positlve and mixed characteristics we require Hypothetical Statements 2.1.4
and 2.2.4. It is obtained by blowing up a functorial ideal on W;L which is the unit
ideal on U. By the construction, W/ is regular and the preimage D;}$® of D is a
simple normal crossings divisor.

Note that the resolution and principalization processes are independent of the
toroidal structures and hence coincide for (W_1y4, Di—1)4) = (Wi, D;—), in
other words (W(ricfl) D 4) = (Wi, Di). This provides a bridge between
W), and Wier.

3(Michael) There is a problem here: it is not clear how to make normalization functorially
projective. Maybe will have to use that the normalized blow up along [ is the blow up along
something like (I™)™°*. Anyway, this should be addressed in §2.4.
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Remark 5.2.2. Since W_ = X] is regular, X := W° is obtained from X{ by
principalization of D and similarly X% := W} is obtained from X7 by principal-
ization of D). Both D} and D) are simple normal crossings divisors, so we could
alternatively take Wi = X| and W} = X/ . Our choice helps to make notation

uniform, though it results in a slightly longer factorization.

Remark 5.2.3. Note that the singularities requiring resolution in this step are far
from general: it follows from Section 5.2.4 below that Zariski locally one can obtain
a toroidal scheme from (W;y, D;+) simply by enlarging the divisor D;+. At least
over an algebraically closed field they admit resolution of singularities, see [ ,
Theorem 8.3.2], and it seems reasonable to expect the same in general, and in a
functorial manner.

5.2.4. Local toroidal charts. Our next aim is to connect W} and W', We will
work locally on W,4. For concreteness, fix a point x € W;_ and consider the
localization W, := Spec Ow,_ .. We denote W)* = W/ Xy, W, and similarly
for W and other W;_-schemes we will introduce later. For shortness, we also
write B, = BZSLt_ Xw, Wa, Dp, = Da,— xw, Wy and Dy = D,_ xXw, W,. By
[ , Proposition 3.4.1] there is an auxiliary toroidal structure Dp, on B, that
enlarges Dp, and on which the action of G,, is toroidal. Let D, be the image of
5336 in VVr

For an fs torsion free monoid M we will use the notation A s = SpecZ[M] and

Euv=Ay ~ Apee. By [ , Corollary 3.2.11] there is a strongly equivariant
toroidal chart (B, D:) = (Ang, Eng). The Gy,-action induces a grading on Mp,
and we set M = (Mp)p and Y = Ap;. By | , Lemma 4.3.5] the torific ideal of

B, is the pullback of the torific ideal of A s, , both ideals are toroidal and the torific
blowing up of B, is the base change of the torific blowing up of Ay, . Furthermore,
taking invariants we obtain a local toroidal chart (W,, D,) — (Y, Eps), and again
the invariant torific ideals Jw, = J;—Ow, and Jy are toroidal and satisfy Jy, =
Jy O, . Thus, writing Y*" — Y for the invariant torific blowing up of Y, we have
Wier = W, xy Y. Notice also that W;1 and the ideal J;+ are locally monoidal.

The auxiliary toroidal structure was used to find the strictly equivariant chart
and to establish compatibility of torific blowings up, since the latter are toroidal
only with respect to the auxiliary structures. However, a posteriori the construction
extends to (W, D) as follows: it is proved in | ,4.4.5] that Dp,_ is the preim-
age of an equivariant toric divisor Eps, C Eps,, and hence D, is the preimage of a
toric divisor E C Ejy, the image of Eyy, under Ag,, — Ay In particular, (Y, E)
is a toroidal chart for (W, D,), and if E*" and E' denote the total transforms
of E and E, respectively, then (Y'°r, E*%) and (Ytor,Etor) are toroidal charts for

(Wter, D¥r) and (Weer, Do), respectively.

5.2.5. Principalization of torific ideals. Consider the resolution of singularities Y’ —

Y and let Y™ — Y be the principalization of the preimage of E in Y'. By Hypo-

thetical Statements 2.1.4(3) and 2.2.4 resolution and principalization are compatible

with toroidal charts, in particular, W, = W, xy Y"* and hence Y™ is a toric

chart for W and the ideal J;+Owres = Jy Ores comes from a toroidal ideal on

Y. This proves that the ideal Ji¥® := J;x Owres on Wi is locally monoidal. Let
res

W denote the canonical principalization of Jj$°, see Section 2.2. It is obtained by
a functorial sequence of blowings up of nonsingular centers disjoint from U starting
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from Wi, see Proposition 2.2.2; in positive and mixed characteristics we require
Hypothetical Statement 2.2.4.

By the universal property of blowing up, the maps WE" --» W' are mor-
phisms. The map Wi" — W, is a composition of maps given functorially by
blowing up ideals restricting to the unit ideal on U. By Section 2.3.10 the mor-
phism W3* — W; itself is given by blowing up a functorial ideal JC"”‘ restricting
to the unit ideal on U. So, by Lemma 2.3.9 the morphism W3" Wtf is given

1
by blowing up the functorial ideal J3" = Can@wtor By D" we denote the total
transform of D{$'. In the local settmg we also consider the auxﬂlary toroidal divisor

D™ which is the total transform of Elor. Diagram (6) now looks as follows:

(7) Wcan Wic-ﬁn

/] N

WES = WIS W e WIT WS =TS

(i=1)+ i— Pit (i+1)—
L/ N
Wi—1y4 = Wiz . J . Wiy =Wiyn)-

Lemma 5.2.6. The ideal J&™ is toroidal. Thus, (W™, D) — (WEr, D) is
a functorial toroidal blowmg up.

Proof. STEP 1: REDUCTION TO TORIC CASE. Without loss of generality it suf-
fices to deal with W — W' and we will work locally on W;_. The blowing up
Wean — WS is the canonical principalization of the torific ideal, which comes from
Y through Y so again by functoriality of 2.2.2 or Hypothetical Statement 2.2.4(3)
we have W™ = W, xy YY" where the toric morphism Y °*" — Y7 is the princi-
palization of Jy Oyres. By the functorial property of blowings up, YY" — Y factors

through Y**. We have that Y** = B] Jcan( ) for a functorial ideal J°* on Y, and
by Lemma 2.3.9, Y4 = Bl e (Y), Where Jem — JenOyo., Let B and E°

denote the total transforms of E** and E° , respectlvely Once again, (Y, Fean)
and (Y E°") are toroidal charts for (W, D) and (W, D). In the same
fashion, Ji*" = Jy*"Owean and therefore it suffices to prove that the ideal Jy*" is
toroidal. .

STEP 2: PROOF IN THE TORIC CASE. In | , Proposition 4.2.1] it is
shown that (Yean, pean) — (Ytor Ftor) ig toroidal,” except that the ideal blown up
is not shown to be toroidal. This can be shown as follows. In [ , Propo-
sition 4.2.2] one constructs an action of G¥ on Y. One shows that the morphism
Ytr Y of charts is equivariant under this action, as well as the torific ideal; the
scheme YT is written as a product of G¥ with a toric scheme providing its toroidal
structure. It suffices to show that the ideal defining the blowing up Y8 — Y'tor
is a GF-equivariant monomial ideal, since then its generating monomials are not
divisible by the coordinates of the G¥ factor.

4(Michael) In the particular case when F = §).
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Since the blowing up Y — Y is the canonical resolution of singularities, the
ideal defining this blowing up on a toric chart is monomial and G*-equivariant.
Also the torific ideal on Y™ is monomial and G*-equivariant, therefore the same
is true for the ideal defining its functorial principalization Y <" — Y°s, &

The above lemma implies that the composition W&E* — W is a toroidal
morphism given by blowing up a functorial toroidal ideal we denote by 7;?1“. Let
W/ — W be the normalized blowing up of the product ideal j?inj‘;in, giving rise
to toroidal morphisms W/ — W, By | , Theorem 3.4.9] there is a functorial
toroidal resolution of singularities Wf°**s — W/. This gives the following:

Lemma 5.2.7. There is a toroidal nonsingular modification Wrres — Wit op-
tained by blowing up a functorial ideal, such that the maps WEres ——> WD gre
both toroidal morphisms.

Note that these latter maps are again blowings up of the pullbacks of the ideal
defining W}ferres — T¥f°r which is functorial as well. Since the morphism is toroidal,
it induces the identity on U, and the toroidal ideal blown up is the unit ideal on U.

We now have pieces of the diagram above looking as follows:

W‘torres
P N
(TorBl,s) (TorBl,s)
e N
Wiij Wicﬁn
(blow up sequy \ / Q up sequence)

Wiy, — Wi wer Wi — Wy,
Wiy =— Wi Wip =— W(q1)—

I

K2

All maps are functorially the blowings up of ideals. The top diamond is at the same
time toroidal, with maps given by blowings up of functorial toroidal ideals, so the
toroidal structure is functorial in X; — X5. By Proposition 3.1.1, the two top maps
Wierres — WA have a functorial toroidal weak factorization; since it is toroidal it
induces isomorphisms on U. This gives a factorization of the top diamond of the
diagram above as follows:

Wporres
[
(TorFact/rS) (TEF&C‘&,-S)
Wpan/ \‘Wparl
i— i+
W_tor
7

Note that Wi = X{ and W} = X/ by Remark 5.2.2, and X! — X, possess
obvious factorizations. Putting these together we functorially obtain a diagram
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" t t 1"
Xl Wlorres Wn:)irles X2
(Factys) (Factys)  (Factys) (Factys) (Factys) (Factys)

res res res res
Xi= 2 Wie = =5 =2 W3S — e = 2 WS o — o — 2 W — 2 X

Note that WW; are given by blowing up of functorial ideals on X5, and that W
are obtained by blowing up functorial ideals on W;, all restricting to the identity
on U. Similarly, the terms appearing in the diagonal arrows are given by blowing
up of functorial ideals on W*. By the result of Section 2.3.10 all terms appearing
are obtained by blowing up of functorial ideals on X5 restricting to the unit ideal
on U. In case X; \ U are normal crossings divisors, we have guarantees that the
same holds for W/, It follows that the same holds for all terms in the sequence
forming W3" — W/ by the properties of canonical principalization, and for the
terms in a factorization of W — W™ since these are all nonsingular toroidal

schemes. Renaming all these terms V;,i =1,...,[, Theorem 1.3.3 follows. &

6. EXTENDING THE FACTORIZATION TO OTHER CATEGORIES

In this section we use the factorization for schemes to construct an analogous
factorization for blowings up of formal schemes, complex and non-archimedean an-
alytic spaces, and stacks. We follow the general outline of the argument in [ ,
Sections 5.1-5.2], though we decided to elaborate more details related to the relative
GAGA issues. In fact, for this construction to work one only needs to have a rea-
sonable comparison theory between algebraic blow ups and their analytifications,
but some of these results do not seem to be covered by the literature, especially in
the complex analytic case.

6.1. Stacks. Once functorial factorization for schemes is established it extends to
stacks straightforwardly.

6.1.1. Basic notions. Our terminology concerning stacks follows that of | ,
§5.1]. In particular, by a stack we mean an Artin stack X and X is ge (respectively,
regular) if it admits a smooth covering W — X with W a qe (respectively, a regu-
lar) scheme. The definition of blowing up along a closed subscheme is compatible
with flat morphisms and hence extends to stacks. We define the regular surjective
category of blowings up of stacks Blgt and the regular surjective category of weak
factorizations of blowings up of stacks FactS* as in definitions 1.3.1 and 1.3.2.

6.1.2. Factorization for stacks. We are now in position to extend the factorization
to stacks.

Theorem 6.1.3. There is a functor BIS!(char = 0) — FactS'(char = 0) from the
reqular surjective category of blowings up f: X' — X in characteristic zero to the
reqular surjective category of factorizations

X =Xg-2X1-2...-X_ 1 -—>%=2%,
in characteristic zero such that the composite

BIS!(char = 0) — FactS*(char = 0) — BIS*(char = 0)
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is the identity. The same holds in positive and mized characteristics if Hypothetical
Statements 2.1.4 and 2.2.4 hold true.

Proof. Choose a smooth covering of X by a qe scheme W. Then W and R =
W xx W are regular ge schemes and the projections p; o: R = W are surjective
and smooth. The pullbacks W/ — W and R’ — R of X’ — X are objects of Bl,
hence Theorem 1.3.3 provides their regular factorizations (W,) and (R,). By the
functoriality, these factorizations are compatible with both p; and py. Since both
pullbacks of the factorization (W,) to R coincide, flat descent implies that (W)
comes from a factorization (X,) of X' — X.

To see that the factorization (X,) is independent of a smooth covering W — X
we note that any smooth covering W’ — X that factors through W induces the
same factorization of X' — X, as follows from the functoriality of factorization with
respect to the morphism W' — W.

Finally, assume that (9’ — 9) — (X’ — X) is a morphism in BIS'. Then there
exist smooth coverings by qe schemes W — X and T' — %) such that the morphism
) — X lifts to a regular surjective morphism 7" — W. It then follows easily from
the functoriality of factorization with respect to 7' — W that the factorization for
stacks we constructed is compatible with ) — X. Thus, the factorization for stacks
is functorial. &

6.2. Geometric spaces.

6.2.1. Categories. We will work with the geometric spaces of the following four
classes, that will simply be called spaces:

(1) qe formal schemes as defined in | , Section 2.4.3],

(2) semianalytic germs of complex analytic spaces, see Appendix B,

(3) k-analytic spaces of Berkovich for a complete non-Archimedean field k, see
[ , Section 1],

(3’) rigid k-analytic spaces, where k is as above and non-trivially valued.

To make notation uniform, the category of all such spaces will be denoted Gp in
each of the four cases.

Remark 6.2.2. (i) The case (3’) is added for the sake of completeness. It is
essentially included in (3) because the category of qcgs (i.e. quasi-compact and
quasi-separated) rigid spaces is equivalent to the category of compact strictly ana-
lytic Berkovich spaces, and all our arguments will be ”local enough”.

(ii) Probably, there exist other contexts where our methods apply, e.g. semial-
gebraic geometry. We do not explore this direction here, but we will deal with the
above four cases in a uniform way that should make it simpler for the interested
reader to extend our results to other possible settings.

6.2.3. Affinoid spaces. We say that a space X is affinoid if it is of the following
type:

X = Spf(A) is affine,

(X, X) is an affinoid germ of a complex analytic space, see Section B.6

X = M(A) is an affinoid k-analytic space,

X p(A) is an affinoid rigid space over k.

Il
wn
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6.2.4. Admissible affinoid coverings. To simplify the discussion we consider only
affinoid coverings X = U;c1X; of a qcgs space by its affinoid domains. Such a
covering is called admissible if it possesses a finite refinement. Here is the main
property of admissible coverings, which may fail for non-admissible ones (e.g. the
covering of a germ (X, X) by one-pointed subgerms (X, z) with z € X).

Lemma 6.2.5. Assume that X = U;c1 X; is an admissible covering of an affinoid
space. Then for any coherent Ox-module F the Cech complex

0= F(X) = [[Fx) = [[F&XinX;) — ...

is acyclic.

Proof. For formal schemes this is classical, and for non-archimedean geometry this
is Tate’s Acyclicity Theorem and its extension to Berkovich spaces. It remains to
deal with complex germs. It suffices to deal with the case of finite coverings, and
then we can replace the direct products with direct sums. Choosing a small enough
representative X' of X we can assume that X is Hausdorff. Choose families of Stein
domains Vo D Vi ... and Vp; D Vi, ... for each ¢ € I such that X = NS2,V,, and
X; = N5y Vni. For each n € N the union U;e7V,,; is a neighborhood of X and hence
it contains some V,,,. Let m = m(n) be the minimal number for which the latter
happens. The intersections U,; = V;,, N V,,; are Stein domains since X is Hausdorff,
hence V,,, is covered by Stein domains U,,; and we obtain the acyclic Cech complex

0— }—(Vm) — @if(Uni) — @i,j}-(Um‘ n Unj) — ..

Since lim, o m(n) = co and X; = N, Uy;, passing to the limit on n we obtain the
sequence from the formulation of the Lemma. It remains to use that the filtered
colimit is an exact functor. &

6.2.6. Regular spaces. Each category of spaces possesses a natural notion of regular
spaces, see [ , Section 5.2.2]. In fact, a space X is regular if it possesses an
admissible affinoid covering X = U; X; such that the rings 4; = Ox (X;) are regular.
In particular, it follows from Lemma B.6.1 that a germ of analytic space (X, X) is
regular if and only if X’ is smooth in a neighborhood of X.

By &p,, we denote the full subcategory of Sp consisting of quasi-compact reg-
ular objects, and we do not impose any separatedness assumption.

6.2.7. Smooth and regular morphisms. Also, the category &p has a natural notion
of smooth morphisms. In cases (1), (2) and (3’) this is the classical notion (with the
obvious adjustment in (2)) and in (3) this is the notion of quasi-smooth morphisms
as defined in [ , Section 4].

In cases (2), (3) and (3’) any morphism is of finite type, so we identify the notions
of smooth and regular morphisms. Regular morphisms of qe formal schemes were
defined in [ , 2.4.12]: a morphism f:Y — X is called regular if it admits an
open covering of the form f;: Spf(B;) — Spf(A;) such that the homomorphisms
A; — B; are regular.

Lemma 6.2.8. If Y — X is a reqular morphism of affinoid spaces in &p then the

homomorphism Ox(X) — Oy (Y) is regular.
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Proof. Case (1) is covered by | , Lemma 2.4.6]. Case (3), and hence also
case (3’), follows from | , Proposition 4.5.1], | , Theorem 3.3] and the
fact that for any affinoid space Z = M(C) the map Z — Spec(C) is surjective by
[ , Proposition 2.1.1]. Case (2) is dealt with similarly using that if Z is an
affinoid germ, z € Z and f: Z — T = Spec(Oz(Z)) is the natural map then f(Z)
is the set of all closed points and the homomorphism Or .y — Oz . is regular by
Lemma B.6.1. &

6.3. Relative GAGA. Assume that X is an affinoid space, A = Ox(X) and
X = Spec A. Relative GAGA relates the theory of X-schemes and X-spaces.

6.3.1. Analytification functor. There exists an analytification/formal completion
functor from X-schemes of finite type to X-spaces. For uniformity, we will usually
call this functor analytification and denote ) +— Y = Y. It is constructed as
follows:

(i) The analytification of A% is A%.

(if) If Y is X-affine, say Y = Spec B with B = Alty,...,t,]/(f1,..-,fm), then
Yy is the vanishing locus of fi,...,fm in A%. It is easily seen to be
independent of the A-presentation of B

(iii) The construction in (ii) is compatible with localizations, so in general one
covers ) by X-affine schemes ); and glues Y*" from V3".

6.3.2. The analytification map. There exist natural analytification maps wy : Y** —
Y which can be constructed through the steps (i)—(iii), or directly (ii) and (iii). Let
us describe them in the affine case )) = Spec B:

(1) The map is Spf B < Spec B. It is injective and the image is the set of open
prime ideals of B.
(2),(3”) The map Y*" — ) is injective and its image is the set of maximal ideals of
B.
(3) The map Y** — ) is surjective, see | , Proposition 2.6.2].

6.3.3. Sheaves. The analytification functor also extends to coherent sheaves: for
any X-scheme ) of finite type there exists an analytification functor Coh(Y) —
Coh(y*") given by F*" = 73, F.

Sec:Gagaproperties ‘

6.3.4. Properties. For each X-proper scheme ) the analytification functor Coh()) =
Coh(Y) is an equivalence of categories. In particular, the analytification functor in-
duces an equivalence between the categories of projective X-schemes and X-spaces.
The references are:

(1) Grothendieck’s Existence Theorem, | , 111y, 5.1.4].

(2) Theorem C.1.1 below.

(3) The analytification was introduced in | , Section 2.6], and comparison
of coherent sheaves can be found in | , Theorem A.1].

(3’) Kopt’s theorem, see [ , Sections 5 and 6] and | , Example 3.2.6].

6.3.5. Analytification and regularity. Various properties are respected by analytifi-
cation, but for our needs we only need to study the situation with regularity.

Proposition 6.3.6. Assume that X is an affinoid space with A = Ox(X), X =

Spec(A4), and Y is an X-scheme of finite type with Y = Y?", then
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(i) If Y is regular then Y is regular.
(ii) Conwversely, assume that' Y is regular, then
(a) in cases (2), (3) and (3°), Y is regular,
(b) in case (1) assume also that Y is X -proper, then Y is regular.

Proof. Note that case (3”) follows from (3) since a qcgs rigid space can be enhanced
to an analytic space, and the regularity is preserved. We will study cases (1), (2)
and (3) separately, but let us first make a general remark. The claims (i) and (ii)(a)
are local on ), so we can assume that ) = Spec B for a finitely generated A-algebra
B in these cases.

Case (1). In this case, A is an I-adic ring and X = Spf A. Since A is qe, B is
ge and so the I-adic completion homomorphism B — Bis regular. This implies (i)
since if B is regular then Bis regular, and so Spfé is regular.

Let us prove (ii). Since A is I-adic, I is contained in the Jacobson radical of A
(see [ , Proposition 10.15(iv)]), and so any point of X has a specialization in

X, := V(I). By the properness of f: Y — X, any point of ) has a specialization in
= f~1(X,), hence it suffices to prove the following claim: if ) is of finite type
over X and Y is regular, then ) is regular at any point y € Vs.

The latter claim is local around y, hence we can assume, again, that ) = Spec B.
Let m C B be the ideal corresponding to y, then the m- adic completion B — ﬁm
factors through the I-adic completlon B - E and SO Bm is the completion of B
along mB. Since X i s qe, Bis qge and so B— Bm is regular. By our assumption
Bis regular, hence Bm is regular too. The homomorphism B,, — Bm is faithfully
flat, hence B,, is regular and we win.

Case (3). In this case, A is k-affinoid and X = M(A). Consider a point y € Y
and set y = my(y) € Y. By | , (1.3.7.2)], ) is regular at y if and only if Y is
regular at y. Since 7y is surjective this implies that ) is regular if and only if Y is
S0.

Case (2). If y € Y and y = my(y) then it follows easily from Lemma B.6.1 that
the homomorphism f,: Oy, — Oy, induces an isomorphism of the completions.
A local ring is regular if and only if its completion is regular, hence Oy y is regular
if and only if Oy, is so. Since the image of 7y contains all closed points, we obtain
that Y is regular if and only if ) is regular. &

6.4. The factorization theorem.

6.4.1. Blowings up. Each of the categories Gp has a natural notion of blowings
up f: X' — X along ideals (e.g., see | , Section 2.4.4] and [ , Section
5.1.2]). In fact, Bi;(X) can be described as follows: if Y C X is an affinoid domain,
Y = Spec(Ox(Y)) and Z C Oy is induced by I, then the restriction of f onto Y is
the analytification of the blowing up Biz()) — Y. We will only consider blowings
up with nowhere-dense centers.

6.4.2. Weak factorization. By a weak factorization of X; — X5 we mean a diagram

Pi1— !
S VAL VA S N AR
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along with subspaces Z; and ideal sheaves J; satisfying conditions (1-5) of Section
1.2, where in (2) and (4) the word “scheme” is replaced with “space”. For brevity
of notation, such a datum will be denoted (V,, ¢., Z,).

We define the regular surjective category of blowings up Blrb;p in Gp and the
regular surjective category of weak factorizations Factresp on Gp as in definitions
1.3.1 and 1.3.2. By definition, these categories are fibred over the category of
regular spaces with regular morphisms, and the fibers over a regular space X will
be denoted Bl,s(X) and Fact,s(X). Thus, Bl,s(X) is the set of blowings up X’ — X
with regular X and Fact,s(X) is the set of all regular factorizations of blowings up
of X.

Lemma 6.4.3. Let X be an affinoid space, A = Ox(X) and X = Spec A. Then
the analytification functor Y — Y induces bijections Bls(X) = Bls(X) and
Fact,s(X) = Fact,s(X).

Proof. By the relative GAGA, see Section 6.3.4, analytification induces a bijection
between the blowings up X’ — X and X’ — X. By Proposition 6.3.6, X’ is
regular if and only if X is regular, hence Bl,s(X) = Bl,s(X). The second bijection
is proved similarly, but this time one also relates regularity of the centers in the
factorizations. &

6.4.4. The main theorem. We are now in position to prove the following analogue
of Theorem 1.3.3.

Theorem 6.4.5. There is a functor Blgp(char =0)— Factrgsp(char = 0) from the
reqular surjective category of blowings up f: X' — X in characteristic zero to the
reqular surjective category of factorizations

X =Vog--»>Vi-—»...-V_1 -V =X,
in characteristic zero such that the composite
BISP (char = 0) — FactSP (char = 0) — BISP (char = 0)

1s the identity. The same holds in positive and mized characteristics if Hypothetical
Statements 2.1.4 and 2.2./ hold true.

Proof. First, let us construct a factorization of f: X’ — X. Fix an admissible
affinoid covering X = U | X; and set X/ = X; xx X’. The rings 4; = Ox(X;) are
qe, see | , Section 5.2.3], so the scheme X =[] | X; with X; = Spec(4;) is
noetherian and qe. Let I be the ideal defining f and let I; C A; be its restrictions.
Consider the blowings up F;: X/ — AX; defined by I;. The analytification of F;
is the restriction f; of f over X; by the relative GAGA, hence X/ is regular by
Proposition 6.3.6(ii).

Set X' = [[_, X! and consider the factorization (V,,®,,Z,) of the blow up
F: X' — X. For each i, it induces a factorization (V;.,®;.,Z;.) of F;: X — X;
and the analytification of the latter is a factorization of f;: X! — X; that will be
denoted (Vi.., Pi.es Zia)-

We claim that the latter factorizations glue to a factorization of f. It suffices
to prove that for any 7,j and an affinoid domain ¥ C X; N X; the restrictions
of (Vi i Zi.) and (V.,¢;.,Z;.) onto Y coincide. Set B = Ox(Y) and Y =
Spec(B), and let G: V' — Y be the blowing up along the ideal induced by I. In
particular, the analytification g: Y/ — Y of G is the restriction of f. The regular
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homomorphisms A; — B and A; — B induce regular morphisms h;, h;j: Y — X
such that G is the pullback of F' with respect to either of this morphisms. The
factorizations of G induced from (V.,, ®., Z,) via h; and h; coincide by Lemma 6.4.6
below. It remains to note that the factorizations of g induced from the factorizations
of f; and f; are the analytifications of these factorizations of G.

We have constructed a factorization of f. The same argument as was used to glue
local factorizations to a global one shows that the construction is independent of the
affinoid covering. Finally, compatibility of factorization with a regular morphism
h:Y — X is deduced in the same way from Lemma 6.2.8 and compatibility with
regular morphisms of factorization for schemes. &

The following result is an analogue of | , Lemma 2.3.1].

Lemma 6.4.6. Assume that F: Bl,s — Factys is a factorization functor, f: X' —
X and g: Y' =Y are two blowings up with reqular source and target and h;: Y —
X with i = 1,2 are two regular morphisms such that hf(f) = g. Then the pullbacks
of F(f) to a factorization of g via hy and hy coincide.

Proof. Extend h; to morphisms ¢;: Y [[X — X so that the map on X is the
identity. Each ¢; is a surjective regular morphism, hence the pullback of F(f) to
Y ][] X via ¢; coincides with the factorization of the blowing up Y’ [[ X' = Y [[ X.
Restricting the latter onto Y coincides with A} (F(f)). &

Remark 6.4.7. (i) An analogue of Lemma 6.4.6 holds true in any category Gp
and the above proof applies verbatim.

(ii) Although h}(F(f)) coincide, they can differ from F(g) when h; are not
surjective. See also | , Remark 2.3.2(ii)].

APPENDIX A. CONSTRUCTION OF A BIRATIONAL COBORDISM VIA DEFORMATION
TO THE NORMAL CONE

Proof of Proposition /.4.1. We follow the construction of | , Theorem 2.3.1]
word for word, except we make it even more explicit and check functoriality.
STEP 1: cobordism Bo for trivial blowing up. We start with

Bo =Py, =P(Ox, - Tp ® Ox, - Ty) =: Px, (Eo),

with its projection mg : Bo — Xs5. Providing the generators Ty and 17 with G,y,-
weights 0 and 1, the scheme By is a birational cobordism for the identity morphism
with the trivial ideal (1), with the standard action of G,, linearized, except that
it does not satisfy Assumption 4.2.2. But that may be achieved after the fact by
taking the symmetric square. The construction is clearly functorial.

STEP 2A: construction of a singular cobordism By. Assume X, is given as the
blowing up of the ideal I on X5. We blow up the G,,-equivariant ideal I? :=
I ® O, + Ij0y on Bo, where I1gy is the defining ideal of {0} x X5. The ideal is
clearly the unit ideal on IP’%]. This blowing up gives rise to a G,,-scheme B; and
projective morphism 7y : By — Be; this is evidently functorial in ¢. The arguments
of Section 2.3.10 show that 771/X> .= 1y o 7; : By — X, is projective, again in a
functorial manner. In particular By C P(E;) for some functorial G,,-sheaf Ej.

STEP 2B: coordinates of By. Let us make the construction of the previous step
explicit: write Fr = mo.I2(1) = I -Uy @ Ox, - Uy with Uy, U; having corresponding
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G,,-weights 0 and 1. Let
Er = FiFEos = 1-Uyly & (OXQ-UlToEBI'UQTl) D OXQ'UlTl

with corresponding G,,,-weights 0,1 and 2. Again it does not satisfy Assumption
4.2.2, but again that may be achieved after the fact by taking the symmetric square.

We have a surjection 7§ F; — IZ(1) where the first coordinate sends f-Uy — fTp
and the second sends Uy — T;. We thus have G,,-equivariant closed embeddings

B; = Bl;s (BO) = BlIB(l)(Bo) C

Pp, (1o F1) = Px,(F1) xx, Bo = Px,(F1) Xx, Px,(FEo) C
Px,(Fr ® Eo) = Px,(E),

where Blrs(1)(Bo) denotes the blowing up of the fractional ideal 1%(1) and the
last inclusion is the Segre embedding.

We describe By = Projy, A as follows. The algebra
A =
Put 1t e 1NN @-e Ok, TIPT @ Ox, 177,
d

with terms I¢7F . Tngk when j > k and Oy, ~TgT1k when j < k, is a graded
G -weighted quotient Sym®E; — A, where we set U; = T; and map %4 14,

We note that B; admits an equivariant projection morphisms By — Bp =
Px,(Fo) which is an isomorphism away from the divisor (T7), and an equivariant
projection morphism B; — Px,(F;), whose image is the closed subscheme we
denote

Px, (Fr)" = Projy, @ @Ij

n>0 \ j=0

The morphism B; — Px,(F7)’ is an isomorphism away from the zero section
Projx, @,>0 Ox. C Px, (Fr)’, whose complement is the total space Spec Sym((I0x,)™")
of the invertible sheaf IOx, on X;.

STEP 2C: stable and unstable loci for weight 1. The homogeneous Cartier divisor
(ToTh) is the union of two regular subschemes: X1 = Projx, €D,,~,(I™-T5") which
is the zero locus of (TyTy,T7), and Xa = Projx, @,,5¢(Ox, - T£") which is the zero
locus of (TyT1, I-T¢). Since the zero locus of the “irrelevant ideal” (I-7¢, ToT1, T7)
is empty, these two subschemes are disjoint. In particular each is a regular Cartier
divisor. It follows that both X; and X5 lie in the regular locus B;°®, which is open
since By is of finite type over the qe scheme Xs.

We have X1 = By NPx,((Er)o) and X2 = Br NPx,((Er)2), where the indices
0 and 2 denote the components with given G,,-weight (the variable a in Section
4.2). Their union (TpT}) is the unstable locus (Bj)y™. The complement is affine,
explicitly

(BI)iSt = SpecX2 A[(TOTI)_l]degree:O

o\ 2 T, T T\ 2
— 2 (10 Y 1 1
—Spe0x2< oI (Tl) @I(ﬂ)eaoxz@oxz (To)@0x2 <T0> ea...>.
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This scheme is in general singular, but the quotient is simpler:
(BI)ist // Gm = SpeCX2 OX2 = Xo.

STEP 2D: stable and unstable loci for weight 2. The projective Cartier divisor
(T?) can be identified as

(Br)s* =Px,(I-T3) U Pypn(I/1?- T3 © O - TyTy)
=X, u C(Z(I)),
where C(Z(I)) is the normal cone. The complement is again affine, of the form

(BI);St = SpeCX2 A[Tl_l]degreezo
o\’ T
:SpeCX2 (..-@Oxz (,11(1)) @OXQ (1_‘?) @OX2> :A_l){z'

(B])%St // (Grm = SpecX2 OX2 = XQ
and the morphism (Bj)5* — X5 is smooth. Another way to see this is to notice
that the map By — Bo restricts to an open embedding on (B)$*, and the image
is the complement of {0} x X5.
STEP 2E: stable and unstable loci for weight 0. The projective zero locus of

(I -Tp)? can be identified as

(B)§" = Px, (Ox, - TT) UP2(1) (Ox, - ToT1 @ Ox, - T) = Xa UPy .
The complement is not necessarily affine, as I is not necessarily principal. However,
recalling the sheaf F; from STEP 2B, the morphism (Bj)5* — Px,(F;) is an open
embedding, whose image is the complement of the zero section. So (Bj)5* is the

total space of the invertible sheaf IOx, on X;. Thus, (B;){" / G,, = X; and the
morphism (Br)§* — X; is smooth.

Thus,

STEP 3A: resolving By and principalizing the preimage of Do. We apply canon-
ical resolution of singularities to By, which is a functorial G,,-equivariant sequence
of blowings up B™® — Bj: see Section 2.1.2, where in positive and mixed char-
acteristic we may use Hypothetical Statement 2.1.4 since dim B = dim X5 + 1.
Next, we apply canonical principalization to the preimage of Do in B™#, obtaining
a functorial G,,-equivariant blowing up sequence B — B8 such that B is regular
and the preimage D C B of D5 is an ordered simple normal crossings divisor: see
Section 2.2, where in positive and mixed characteristic we use Hypothetical State-
ment 2.2.1. We obtain a sequence of blowings up Bp - By...+ By = B¢ < B
with ideals A; supported on the singular locus, which is included in the preimage
of Px,((Er)1) = Px,(Ox, - U1To @ I - UyTy), and the preimages of Ds.

STEP 3B: embedding. By the arguments of Section 2.3.10, the blowing up se-
quence B — Bp is functorially a single blowing up of an ideal J. Write J = J©O B;
so that B = Bl;B;. There is a functorially defined integer d such that J(d) is
globally generated on By relative to Xo. Using | , 11.7.10(b)] we have an
equivariant embedding of B inside

Py, (E) := Px, (nff/ ij(d)) .
Since J is the unit ideal on (B;)§" and (B;)5", we have that pBr/Xe J(d) —
Sym?(E;) is an isomorphism on the components of G,,-weight 0 or 2d. Since
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Sym?(E;) has weights 0, ...,2d which survive in the ring of B; it follows that
amin(B) = 0, amax(B) = 2d. Inspecting the description of unstable loci in Section
4.1, Equation (1) we note that B§® = B x g, (Br)5" and B3 = B x g, (By)$*.”

STEP 3C: B is a cobordism for ¢ that respects U. We have shown in steps 2d
and 2e that the morphisms gqo: (B7)5* — X5 and ¢qp: (Bp)$* — X; are smooth.
Functoriality of resolution and principalization with respect to ¢; implies that, once
restricted to (By)5", respectively (By)&*, the morphism B™ — By is an isomor-
phism and the morphism B — By is the pullback of the principalization X} — X,
of Dy, respectively X| — X; of D;. It follows that B xp, (B;)5* J G,, = X} and
B xp, (B1)&' ) G, = X| and hence B is a cobordism for ¢. Also, we note that
BN P(EO) = X] and BN P(Egd) = X, so Assumption 4.2.3 applies.

To show that B is compatible with U it suffices to show that all blowings up in
the sequence B — By are trivial over ]P’[l]. This is so for the blowing up By — IP’}(2
because I + I;gy is the unit ideal on P},. This is so for the blowing up sequence
B¢ — B; because P, is regular, and this is so the blowing up sequence B — B*°®
because P}, is disjoint from the preimage of Ds.

&

APPENDIX B. GERMS OF COMPLEX ANALYTIC SPACES

In this section we use germs to extend the category of complex analytic spaces
to include certain Stein compacts. This will be used later to establish a tight con-
nection between the scheme theory and complex analytic geometry. In particular,
this is needed to develop a relative GAGA theory.

B.1. Semianalytic sets. We follow the setup of Frisch [ ]. A subset X of an
analytic space X is called semianalytic if its local germs belong to the minimal class
of germs, stable under finite unions and complements, generated by inequalities of

the form f(x) < 0 for real analytic f, see | , p- 120]. It is called a Stein if X
has a fundamental system of neighborhood of Stein subspaces of X, see | , -
123).

B.2. The category of germs. A germ of a complex analytic space (or, simply, a
germ) is a pair (X, X) consisting of an analytic space X and a semianalytic subset
X C X. We call X the support of (X, X) and we call X a representative of (X, X).
Sometimes, we will use the shorter notation X = (X, X).

A morphism ¢: (X, X) — (),Y) consists of a neighborhood X’ of X and an
analytic map f: X’ — ) taking X to Y. We say that f is a representative of ¢.
Note that a morphism (X, X) — (),Y) is an isomorphism if it induces a bijection
of X and Y and an isomorphism of their neighborhoods.

We identify an analytic space X with the germ (X, X). In particular, the cate-
gory of analytic spaces becomes a full subcategory of the category of germs.

B.3. The structure sheaf. Given a germ (X', X') we provide its support with the
structure sheaf Ox = Ox|x = i*Ox, where i: X — X is the embedding. In
particular, we obtain a functor F: (X, X) — (X, Ox) from the category of germs
to the category of locally ringed spaces.

5(Dan) One could explain more - do you think we need to?
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Remark B.3.1. We do not aim to develop a complete theory of semianalytic
germs, so we do not study the natural question whether F is fully faithful.

B.4. Closed polydiscs and convergent power series. Consider an analytic
affine space X = A with coordinates ti,...,t,. For any tuple r of numbers
T1,...,rn € [0,00), by the closed polydisc D = D,. of radius r we mean the subset of
X given by the inequalities |t;| < r;. Note that r; can be zero. By C{ty,... t,}l we

denote the ring of overconvergent series in t1,...,t, of radius r. It is a noetherian
regular excellent ring of dimension n, see | , Theorem 102].

Lemma B.4.1. Let D = D, C X = A be a polydisc and A = Ox(D) =T'(Op).
Then,

(i) C{t1,... ty} = A.

(i) T(D, -) induces an equivalence between the categories of coherent Op-modules
and finitely generated A-modules, and higher cohomology of coherent Op-modules
vanish.

(#ii) For any a € D the ideal my, = (t; — aq,...,tn, — a,) C A is mazimal, and
any maximal ideal of A is of this form.

(iv) The completion of A along mg is C[[t1 — a1, ... ,tn — ay]]-

Proof. The first claim is a classical result of analysis of several complex variables.
Assertion (ii) follows from the fact that D is the intersection of open polydiscs
containing it, and the latter are Stein spaces. Assertion (iv) follows easily from
(iil), so we will only prove (iii).

For any f € A the quotient

g1 = (f(tl, e ,tn) — f(al,tz,. .. ,tn))/(tl — al)

lies in A, so f = (t1 — a1)g1 + fi(te, ... t,) with f1 = f(a1,t2,...,tn). Applying
the same argument to to and fi, etc., we will obtain in the end a representation
[ = fla,...,an) + > (t; — a;)g;. In particular, A/m, = C and hence m, is
maximal.

Conversely, assume that m C A is maximal. The norm || f|| = max,ecp |f(x)| on
A induces a norm on the field kK = A/m, hence the completion K = £ is a Banach
C-field. Thus, K = C by Gel’fand-Mazur theorem, and we obtain that ¢; —a; € m
for some a; € C. Finally, |a;| < r; as otherwise t; — a; € A*. &

B.5. Classes of morphisms. Let ¢: (),Y) — (X, X) be a morphism of germs.
We say that ¢ is without boundary if there exists a representative f: )’ — X
such that Y = f~}(X). Let P be one of the following properties: smooth, open
immersion, closed immersion. We say that ¢ is P if it is without boundary and
has a representative which is P. We say that ¢ is an embedding of a subdomain
(resp. quasi-smooth) if it possesses a representative which is an open immersion
(resp. smooth).

Remark B.5.1. The above terminology is chosen to match its non-archimedean
analogue as much as possible.

B.6. Affinoid germs. A germ X is called affinoid if it admits a closed immersion
into a germ of the form (C™, D) where D is a closed polydisc. Such a germ is
controlled by the ring Ox (X) very tightly.
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Lemma B.6.1. Assume that X is an affinoid germ and let A = Ox(X) and
f:(X,0x) =Y = Spec(A) the corresponding map of locally ringed spaces. Then,

(i) A is a quotient of a ring C{ty,... t,}.; in particular it is an excellent noe-
therian ring.

(i1) D(X, -) induces an equivalence between the categories of coherent O x-modules
and finitely generated A-modules, and higher cohomology of coherent Ox-modules
vanish.

(#ii) f establishes a bijection between X and the closed points of Y.

(iv) For any point x € X with y = f(x) the homomorphism Oy, — Ox g is
reqular and its completion @yyy — @X’I is an isomorphism.

Proof. In the case of a closed polydisc the assertion was proved in Lemma B.4.1.
In general, we fix a closed embedding i: X < D into a closed polydisc. So, Ox
becomes a coherent Op-algebra such that the homomorphism ¢: Op — Ox is
surjective, and then all assertions except the first half of (iv) follow easily from
the case of a polydisc. For example, T'(X,Ox) is a quotient of I'(D,Op) since
HY(D,Ker¢) = 0, thereby proving (i).

The only new assertion is that ¢: Oy, = Ox , is regular. This follows from the
facts that qAS is an isomorphisms and the local ring Oy, is excellent (since it is a
localization of the excellent ring A). &

APPENDIX C. THE COMPLEX RELATIVE GAGA THEOREM

C.1. Statement of the theorem. Let (X, X) be an affinoid germ as in Appendix
B with ring of global analytic functions A, and r > 0 an integer. Set P, = CP" x X
and endow it with a locally ringed space structure using the sheaf Op; = Opr, [py, .
We have a germ (P%,P% ) and a morphism of locally ringed spaces h : P% — P7.
The aim of this appendix is to prove the following extension of Lemma B.6.1:

Theorem C.1.1 (Serre’s Théoreme 3). Let (X, X) be an affinoid germ with ring
of global analytic functions A, and r > 0 an integer. Then the pullback functor h* :
Coh(P7) — Coh(PP% ) is an equivalence which induces isomorphisms on cohomology
groups.

Since (X, X) is closed in (C", D) it suffices to consider the case (X, X) = (C", D).
So from now on we make this assumption, and write A for the ring of holomorphic
functions on X = D.

We follow the steps of Serre’s original proof | , §3] in some detail, to alleviate
our skepticism that this generalization might actually work. See also | ], which
sketches Serre’s proof. One difficulty is that we do not know if D x C" is Stein in
the sense of | ] or | ]. The problem is that if {D;} are the open polydiscs
containing D then {D; x C"} do not form a fundamental family of neighborhoods of
D x C", while functions on D x C" are only guaranteed to extend to some member
of a fundamental family of neighborhoods. This is circumvented in Lemma C.2.2,
which is the only point where we differ from the original arguments.

C.2. Cohomology.

Proposition C.2.1 (Serre’s Théoreme 1). Let F be a coherent sheaf on P7. The
homomorphism h* : HY(P"y, F) — H'(PY,, h*F) is an isomorphism.
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Lemma C.2.2. (1) We have H'(P"y, F) = H' (P}, h*F) = 0 for i > r and all
F.
(2) The proposition holds for F = Opr, for all T > 0.

Proof. (1) For H*(P, F) = 0 use the standard Cech covering of P’,, which has
only 7 + 1 elements. We need to show H*(P},, h*F) = 0.

On the analytic side we mimic the standard argument for vanishing using Cech
cocycles of a covering by closed polydiscs instead of affine spaces. Let h*F — S*® be
the standard flabby resolution of h*F by discontinuous sections, so H (Y, h*Fly) =
HY(I'(Y,S*)) for any subset Y C P7,. Let C" ~ U; C CP" be the standard open
sets and let D; C U; be the standard closed polydisc of fixed radius > 1. Set
X; =D x D; C P}, and for each subset I C {0,...,n} let X; = NierX;. Then X;
are complex affinoids for I # 0, hence H' (X[, h*F|x,) = 0 = HY(['(X;, S*)) for
>0 and I # 0.

On the other hand

C'({Xi}; Sj) = @m:lSﬁ;I — @\II:2S§(, — .. :|

is a flabby resolution of S7 so H(T'(PY,,C*({X;},57))) = I'(P%,, S7) and for i > 0
we have H*(I'(P%,C*({X;},57))) = 0.

Consider the double complex CP7 = @ ;—,I'(X7, S9) and its two edges I'(P", S*)
and C? = @7=p'(X1, h* F). We obtain that

H' (P, h*F) = HY(I'(P", %)) = H'(C**) = H(C*).

The latter is trivial in degrees > 7.

(2) We have that I'(Opr, ) = A and H'(Opy,) = 0 for i > 0 by | , Theorem
IT1.5.1]. Tt suffices to show that W*OPB = Op and Riﬂ'*(’)% = 0 for ¢ > 0 where
7 : P — D is the projection, since D is Stein. For this note that Opr = 3. L Opr

. . . C
where j,. : P, — P¢p. is the inclusion:

)

T Jr T
]PD IP>(C]P’"

D4j>(C]P’".

By the topological proper push-forward theorem | , Corollary VIIL.1.5] we have

RiW*OPE = j()_lRiw*O]p

cpn

and the result follows from Serre’s original GAGA theorems. &

Lemma C.2.3. The proposition holds for F = Opr, (n) for all v > 0 and all inte-
gers n.

Proof. Induction identical to | , section 13 Lemme 5]: the result holds for r = 0
since D is Stein. Supposing it holds for 7 — 1 and all n, we have the exact sequence
0 — Opr (n—1) = Opr (n) — Opg_l(n) — 0 and the corresponding sequence for
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P,. We obtain a canonical homomorphism of long exact sequences

H'™H (P, O(n) —— H' (P, O(n — 1)) —— H' (P}, O(n)) —— H' (P, 0(n))

| | l |

H7Y P, 0(n) —— HY(P}, O(n — 1)) —— H' (P}, O(n)) — H (P}, ', O(n)).

The vertical arrows on the right and left are isomorphisms by the inductive as-
sumption. It follows that the result holds for » and O(n — 1) if and only if it holds
for O(n). Since we have proven that it holds for O, it holds for all n. &

Proof of the proposition. The proof is identical to Serre’s Théoreme 1. We apply
descending induction on ¢ for all coherent P’} modules F. The case of i > r is
proved by the lemma. Since F is coherent there is an epimorphism £ — F with
& = O, O0pr, (—k;). Denoting by G the kernel, G is coherent and we have a short
exact sequence

0=-G—=E—=F—=0.

Since the map h is flat we have an exact sequence
0—h"G — h*E - h*F — 0.
In the commutative diagram of cohomologies with exact rows

H'(P),€) ——— H'(P)y, F) ——— H'"H (P}, G) ——— H™H(P), €)

| | | |

Hi(PY,, h*E) —— HI(PY,, h* F) —— HL(P) h*G) —— HFL(PY), h*E)

the vertical arrows on the left and right are isomorphisms by Lemma C.2.3. By the
induction hypothesis H**1 (P, G) — H**1(P%,, h*G) is an isomorphism as well. By
the five lemma the result holds for H* (P, F) — H*(P7,, h*F) as required. &

C.3. Homomorphisms.

Proposition C.3.1 (Serre’s Théoreme 2). For any coherent P7y-modules F,G the
natural homomorphism

Hompr, (F,G) — Homgr (h*F,h*G)
is an isomorphism. In particular the functor h* is fully faithful.
Lemma C.3.2. The sheaf homomorphism
h*Hompr, (F,G) — Hompr (R*F, h*G)
is an isomorphism.
Proof. This follows since Opr is a flat Opr-module. Indeed, for a closed point
x € P, corresponding to a point 2’ = h(x) € P’y we have
(h*HOm[pz (F, g))m = Homo_,(Fur,G2) ®o,, O
= Homo, (Fo ®0,, O, G ®0,, Ox)
= Hompr (W*F,h*G)..
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Proof of the proposition. By Serre’s Théoreme 1, h* preserves cohomology of co-
herent sheaves. Taking H 0 in the lemma the result follows. &

C.4. The equivalence. It remains to show:

Proposition C.4.1. The functor h* is essentially surjective.

Proof. This is an inductive argument on r identical to Serre’s Théoreme 3 which
we repeat below. The case r = 0 follows from Lemma B.6.1. Assume the result
is known for r — 1 and let F be a coherent sheaf on P},. By Lemma C.4.2 below
there is an epimorphism ¢ : O(—ng)* — F, and applying this again to Ker(¢)
we get a resolution O(—nq)* LA O(—ng)*o — F — 0. By Serre’s Théoréme 2 the
homomorphism 1 is the analytification of an algebraic sheaf homomorphism ', so
the cokernel F of 1) is also the analytification of the cokernel of 7’ &

Lemma C.4.2. Assume the proposition holds for r — 1. Then for any coherent
sheaf F on P, there is ng so that F(n) is globally generated whenever n > ng.

Proof. By compactness it suffices to show that global sections of F(n) generate
F(n), for fixed z. By Nakayama it suffices to show that global sections of F(n)
generate the fiber F(n), ®o, , Cs.

Picking a hyperplane IP“;l ~ H > z we obtain an exact sequence 0 — O(—1) —

O — Oy — 0, giving an exact sequence F(—1) B F & Fy — 0. Writing P for

Ker(pg) = Im(p1) we have two exact sequences
0—-G—F(-1)—=P—=0 and 0O—-P—=>F—=Fu—0,
noting that G and Fpy are coherent sheaves on H. Twisting by O(n) gives
0—-G(n)—>Fn—-1)—Pn)—0
and
0— P(n) = F(n) = Fu(n) — 0.
The long exact cohomology sequence gives
H'(Pp, F(n—1)) — H'(Pp, P(n)) = H*(H,G(n))
and
H' (P, P(n)) = H'(Pp, F(n)) — H'(H, Fp(n)).

By the assumption Fy and G are analytifications of algebraic sheaves, so for
large n the terms on the right vanish by Serre’s Théoreme 1. It follows that
dim H'(P%,, F(n)) stabilizes for large n, and when it does the exact sequences
above imply that H' (P}, P(n)) — H(P7},, F(n)) is bijective so HO(P},, F(n)) —
HY(H, Fg(n)) is surjective. Since the result holds for analytifications of algebraic
sheaves, Fp(n) is globally generated for large n, implying that F(n), ®o,, , C; is
generated by global sections, as needed. &
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