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Part 3: The Cross Product



In some cases, it’s useful to have a product of vectors that produces a direction as well as a

magnitude. There isn’t a nice way to do this in two-dimensional space, but in three-dimensional

space, there is a vector product called the cross product.

We write the cross product of two vectors ~v and ~w (which is a third vector) as ~v × ~w.

To define the cross product, we have to determine how large the resulting vector should be,

and also in which direction it should point.



Recall that for two vectors ~v and ~w, if the angle between the vectors is θ, the dot product of

the vectors is

~v · ~w = |~v||~w| cos θ.

We define the magnitude of the cross product of ~v and ~w as

|~v × ~w| = |~v||~w| sin θ.

For example, the vectors 〈2, 0, 0〉 and 〈0, 3, 0〉 are orthogonal, so the angle between them is

π/2. This means that the magnitude of 〈2, 0, 0〉 × 〈0, 3, 0〉 should be 2 · 3 · sin(π/2) = 6.



Given two three-dimensional vectors, unless the vectors are parallel (meaning that they point

in the same or in opposite directions), there is exactly one two-dimensional plane that contains

both of them.

We choose the direction of the cross product of the two vectors so that it is orthogonal to both

vectors (and to every vector in the plane containing them).

There are two directions that would work, and we choose one of them using the “right-hand

rule”: if you hold your right hand such that your fingers curl from ~v toward ~w (through an

angle less than π), then your thumb points in the direction of ~v × ~w.

Using this rule, 〈2, 0, 0〉 × 〈0, 3, 0〉 should point in the positive z-direction, so

〈2, 0, 0〉 × 〈0, 3, 0〉 = 〈0, 0, 6〉 .

Note that if the vectors are parallel, we cannot choose a direction this way. But in that case,

the angle between the vectors is either 0 or π, and since sin 0 = sin π = 0, which means that

the cross product is the zero vector, which has no direction.



In terms of unit component vectors (~ı, ~, and ~k), we can define the cross product of each

pair of unit component vectors. The cross product is distributive over vector addition, so this

determines the product of any pair of vectors.

Note that because of the right-hand rule, switching the order of the multiplied vectors reverses

the direction of the result!

~ı× ~ = − (~×~ı) = ~k

~× ~k = −
(
~k × ~

)
=~ı

~k ×~ı = −
(
~ı× ~k

)
= ~

~ı×~ı = ~× ~ = ~k × ~k = ~0



If we break a cross product up using these ~ı,~,~k rules, we can derive the following formula for

the cross product.

〈v1, v2, v3〉 × 〈w1, w2, w3〉 = 〈v2w3 − w2v3, v3w1 − w3v1, v1w2 − w1v2〉

One way to remember this formula is as the determinant of the following 3× 3 matrix.

(
v1~ı + v2~ + v3~k

)
×
(
w1~ı + w2~ + w3

~k
)

=

∣∣∣∣∣∣∣
~ı ~ ~k

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣∣

We can use this formula to confirm (as we showed earlier) that

〈2, 0, 0〉 × 〈0, 3, 0〉 = 〈0− 0, 0− 0, 6− 0〉 = 〈0, 0, 6〉



The following properties apply to the cross product:

• The cross product is anti-commutative: ~v × ~w = −(~w × ~v)

• The cross product is compatible with scalar multiplication: c1~v × c2 ~w = c1c2(~v × ~w)

• The dot product is distributive over vector addition: ~u× (~v + ~w) = ~u× ~v + ~u× ~w

• The cross product is not associative: ~u× (~v × ~w) = (~u · ~w)~v − (~u · ~v)~w

• The cross product of any vector and the zero vector is the zero vector: ~v ×~0 = ~0

There are other cross product properties listed in some textbooks, but most of them result from

the ones above.



One application of the cross product is to find the area of a parallelogram. We say a parallelo-

gram is determined by two vectors if the two vectors form adjacent sides of the parallelogram,

as shown below.

The area of a parallelogram is its base length times its height. In this case, that product is

|~v||~w| sin θ, which is the magnitude of ~v × ~w.

For example,

〈1, 2, 3〉 × 〈4, 5, 6〉 = 〈−3, 6,−3〉
| 〈−3, 6,−3〉 | =

√
9 + 36 + 9 = 3

√
6

This means that the parallelogram determined by 〈1, 2, 3〉 and 〈4, 5, 6〉 has area 3
√

6.



Two vectors determine a parallelogram. Three vectors determine a parallelepiped, as shown.

The volume of a parallelepiped is the area of its parallelogram base times its height. The base

area in the picture above is |~u× ~v|, and the height is |~w| cos θ. The product of these is

|~u× ~v||~w| cos θ = (~u× ~v) · ~w

The quantity above is known as either the triple scalar product or the box product.



If the order of the three vectors are “cycled”, the value stays the same, though if their order is

reversed, the value is negated (because the cross product is anti-commutative).

A = (~u× ~v) · ~w = (~v × ~w) · ~u = (~w × ~u) · ~v

−A = (~v × ~u) · ~w = (~w × ~v) · ~u = (~u× ~w) · ~v

So depending on the chosen order of the three vectors, the box product may be negative, but

the volume of the corresponding parallelepiped will always be the absolute value of the box

product.

For example, the parallelepiped determined by 〈1, 2, 3〉, 〈4, 5, 6〉, and 〈7, 0, 0〉 has volume

|(〈1, 2, 3〉 × 〈4, 5, 6〉) · 〈7, 0, 0〉| = |〈−3, 6,−3〉 · 〈7, 0, 0〉| = | − 21| = 21.


