We define an inner product space and show the following:

1. $\|f+g\|^{2}=\|f\|^{2}+\|g\|^{2}$ when $\langle f, g\rangle=0$.
2. $\|f+g\| \leq\|f\|+\|g\|$ (triangle inequality)
3. $|\langle f, g\rangle| \leq\|f\|\|g\|$ (Cauchy-Schwarz)
4. When $g \neq 0$, we have $\left\langle f-P_{g} f, g\right\rangle=0$ where

$$
P_{g} f=\frac{\langle f, g\rangle}{\langle g, g\rangle} g .
$$

Proof. 1 and 4 are direct calculations that are left to the reader. 2 follows from squaring both sides, expanding, and using Cauchy-Schwarz. We observe that 2 implies

$$
\|f\|^{2} \leq\|f+g\|^{2} \text { when }\langle f, g\rangle=0
$$

and hence

$$
\begin{equation*}
\|f\| \leq\|g\| \text { when }\langle f, g-f\rangle=0 \tag{1}
\end{equation*}
$$

Now to prove 3. It is trivial when $g=0$. Otherwise, we have

$$
\left\langle f-P_{g} f, P_{g} f\right\rangle=0
$$

by 4 and linearity, and hence

$$
\left\|P_{g} f\right\|^{2} \leq\|f\|^{2}
$$

by (1). This is a restatement of Cauchy-Schwarz.
Now suppose that E is a finite orthornormal set of vectors. Then $\left\langle f-\sum_{e \in E} P_{e} f, e_{0}\right\rangle=$ 0 for any $e_{0} \in E$, so

$$
\left\langle f-\sum_{e \in E} P_{e} f, \sum_{e \in E} P_{e} f\right\rangle=0
$$

and hence $\left\|\sum_{e \in E} P_{e} f\right\| \leq\|f\|$. Letting c_{e} be such that $P_{e} f=c_{e} e$, we then have

$$
\sum c_{e}^{2}=\left\|\sum_{e \in E} c_{e} e\right\|^{2} \leq\|f\|^{2}
$$

