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Basic Definitions |

1. Quadratic-like map: f: U — V.
» f is proper and holomorphic of degree 2.
» UcCcV.
We let Kr = (oo £ <V. We will assume that f'(0) = 0.

2. f: U — V is N-renormalizable: We can find Uy C U,
Vy C V such that FN: Uy — Vy is quadratic-like and
0e KfN. We let Ky be KfN.

3. f: U — V is primitively N-renormalizable: f is
N-renormalizable and f%(Ky) N Ky = 0 for 0 < k < N.

4. We say that f.(z) = z? + c is infinitely renormalizable of
B-bounded primitive type if f is primitively
No|N1|Ny| .. .-renormalizable (with Ng = 1), and
Nii1/Ng < B for all k > 0.



Bounds for bounded-primitive type

Theorem

Suppose that f(z) = z? + c is B-bounded infinitely primitively
renormalizable. Then for every primitive renormalization time N,
we can find Uy, Vi such that fN: Uy — Vi is an
N-renormalization of f and mod(Vy, Uy) > €(B).
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Theorem

Suppose that f(z) = z? + c is B-bounded infinitely primitively
renormalizable. Then for every primitive renormalization time N,
we can find Uy, Vi such that fN: Uy — Vi is an
N-renormalization of f and mod(Vy, Uy) > €(B).

We say that f has the a priori bounds.



Examples and Applications

» Suppose that f-(z) = z2 + c is infinitely renormalizable of
bounded primitive type.

1. The Mandelbrot set is locally connected at c.

2. The quasiconformal map from M to My for any
Mandelbrot-like family A is CHe at ¢, with conformal
derivative.

3. The rescalings of M around ¢ converge in the Hausdorff
topology to C.



Examples and Applications

» Suppose that f-(z) = z2 + c is infinitely renormalizable of
bounded primitive type.

1. The Mandelbrot set is locally connected at c.

2. The quasiconformal map from M to My for any
Mandelbrot-like family A is CHe at ¢, with conformal
derivative.

3. The rescalings of M around ¢ converge in the Hausdorff
topology to C.

» Suppose that f-(z) is infinitely renormalizable of constant
primitive type. Then the rescalings of the small Mandelbrot
sets My around c converge in the Hausdorff topology.



Examples and Applications

» Suppose that f-(z) = z2 + c is infinitely renormalizable of
bounded primitive type.

1. The Mandelbrot set is locally connected at c.

2. The quasiconformal map from M to My for any
Mandelbrot-like family A is CHe at ¢, with conformal
derivative.

3. The rescalings of M around ¢ converge in the Hausdorff
topology to C.

» Suppose that f-(z) is infinitely renormalizable of constant
primitive type. Then the rescalings of the small Mandelbrot
sets My around c converge in the Hausdorff topology.

» The set of parameter values ¢ such that f. is infinitely
renormalizable of bounded primitive type has measure 0.
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Suppose that f is primitively N-renormalizable.
> We let Ky = UQI;OI fX(Kyn) be the union of small Julia sets.

» We let vy be the curve in C\ Ky separating Ky from the
other small Julia sets.

» We let L(yn; C\ Ky) denote the Poincaré length of the
geodesic representative of vy in C\ Kp.



Basic Definitions Il

Suppose that f is primitively N-renormalizable.
> We let Ky = UQI;OI fX(Kyn) be the union of small Julia sets.

» We let vy be the curve in C\ Ky separating Ky from the
other small Julia sets.

» We let L(yn; C\ Ky) denote the Poincaré length of the
geodesic representative of vy in C\ Kp.
Suppose that f is No|Ni|Nz| . . .-primitively renormalizable. For
n>0, welet K, = Ky,, Ko = Kp,, and v, = yp, if there is
danger of no confusion.



Basic Definitions Il

Suppose that f is primitively N-renormalizable.
> We let Ky = UQI;OI fX(Kyn) be the union of small Julia sets.

» We let vy be the curve in C\ Ky separating Ky from the
other small Julia sets.

» We let L(yn; C\ Ky) denote the Poincaré length of the
geodesic representative of vy in C\ Kp.

Suppose that f is No|Ni|Nz| . . .-primitively renormalizable. For
n>0, welet K, = Ky,, Ko = Kp,, and v, = yp, if there is
danger of no confusion. We will prove the following well-known
theorem as part of our theory:

Theorem
Suppose that f is as above, and L(y,; C\ K,,) < Lo(f) forne Z™.
Then f has the a priori bounds.



lllustration of Ky, Ky, and vy for N =5




If it's bad now, it was worse earlier

We will prove the following:

Theorem
Suppose that f is B-bounded No|Ni|Na| . . .-primitively
renormalizable. Then

L(’Yn—12; C \ Kn—12) > L('Yn—lZ; C \ ICn) > 2L('Yn; C \ Icn)

whenever

This implies that L(y,; C\ Kp) < Lo(B) for all n, and hence the a
priori bounds.



Pseudo-quadratic-like maps

Pseudo-quadratic-like map (i,f): U — V:
» Simply connected Riemann surfaces U and V.
» Non-degenerate compact full continua Ky C U and Ky C V.
» A holomorphic immersion i: U — V such that i~1(Ky) = Ky,
and i: Ky — Ky is a bijection.
» A proper degree 2 holomorphic map f: U — V such that
f~H(Kv) = Ku.
A pseudo-quadratic-like map (i, f): U — V is quadratic-like if i is
injective and i(U) CC V.
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Pseudo-quadratic-like map (i,f): U — V:
» Simply connected Riemann surfaces U and V.
» Non-degenerate compact full continua Ky C U and Ky C V.
» A holomorphic immersion i: U — V such that i~1(Ky) = Ky,
and i: Ky — Ky is a bijection.
» A proper degree 2 holomorphic map f: U — V such that
f~H(Kv) = Ku.
A pseudo-quadratic-like map (i, f): U — V is quadratic-like if i is
injective and i(U) CC V.
Theorem
Suppose that (i, f): U — V is a pseudo-quadratic-like map. Then
we can find U C U and V' C V such that (i,f): U — V' is

quadratic-like. Moreover, we can make
mod(V’,i(U")) > e(mod(V, Ky)).



The Canonical Renormalization

Theorem
Suppose that f-(z) = z% + c is primitively M|N-renormalizable.
Then we can find a pseudo-quadratic-like M-renormalization
(i/\//, fM)Z Upm — V) such that

> L(mi Vi \ Kn) = Lym; C\ Kn).

| 2 L(’y%, VM\K:%) = L('}’N,(C\’CN)




The Main Local Theorem

Theorem
Suppose that the pseudo-quadratic-like map (i,f): U — V is
N-renormalizable. Then

L(yi; V\KN) > 278 N - L(yw; V\ Kn) = C(N).



The Main Local Theorem

Theorem
Suppose that the pseudo-quadratic-like map (i,f): U — V is
N-renormalizable. Then

L(yi; VA Kn) =278 N L(yw; V\ Kn) — C(N).
Theorem

Suppose that f. is B-bounded No|Ny|Ny| . . .-primitively
renormalizable. Then

L(A/n712; C \ ,Cn) > 2L(“/n; C \ ,Cn)

whenever L(yp; C\ KCp) > Lo(B).



The Main Local Theorem

Theorem
Suppose that the pseudo-quadratic-like map (i,f): U — V is
N-renormalizable. Then

L(yi; V\KN) > 278 N - L(yw; V\ Kn) = C(N).

Theorem
Suppose that f. is B-bounded No|Ny|Ny| . . .-primitively
renormalizable. Then

L(A/n712; C \ ,Cn) > 2L(’7’n; C \ ,Cn)

whenever L(yp; C\ KCp) > Lo(B).

Let N = gle—: then N < B2 and 2718V > 2718312 > 2

(Let (7, f): U — V be the canonical N,_12-renormalization of f.).




The Extremal Width “Functor”

For any path family T we let

W(T) = inf {/p2 | Ly(y) > 1forallye r}

Let S be a compact Riemann surface with boundary. We let A(S)
denote the space of arcs on S, and W.A(S) denote the space of
formal sums of disjoint arcs on S. Let F be a partial proper
foliation on S. Then we let

W(F) = Y W(Fla)e,
acA(S)

or

W(F)(a) = W(Fla)-



The canonical foliation: we illustrate Feanla
/
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We let Wcan(s) = W(fcan(s))-
1. If f:S — T is a finite cover, then Wean(S) = F*Wean(T).

2. If F is any proper partial foliation on S, then
Wcan(s) > W(‘F) -2
(Wean(S)(r) 2 W(F)(a) - 2).

3. If v is a peripheral closed Poincaré geodesic on S, then

L(’Y; 5) =TT <’Y’Wcan(5)> + O(l; X(S))



Horizontal and vertical arcs

ignored

N\

horizontal







The W, version of the Main Local Theorem
We let W (V' \ Ky) denote Wean(V \ Kn) restricted to the

can

horizontal arcs of Wean(V \ Kp), and likewise define WY,

can-

Theorem

W& (VA Kn)llr = 27 W (VA Kn) [ = C(N).

can



The W, version of the Main Local Theorem

We let W (V' \ Ky) denote Wean(V \ Kn) restricted to the
horizontal arcs of Wean(V \ Kp), and likewise define WY,

can-

Theorem
IWn(V\ Kn)lle > 27 [WEL (V\ )l = C(N).
By property 3,
L(y1: VA Kn) =7 {71, V\ Kn) + O(1; N) = 7[[Wnlls — C(N)

and

N-1

D LIy VAK) = 7 WER 114 0(L; V) < 2 [WEEP [l +C ().
k=0

Moreover L(y1) < 2L(f~%*(y1)) for k=1,...,N — 1. So Theorem
8 implies the Main Local Theorem.
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Three steps to prove the Main Local Theorem

We let VK = f=kV (for f: V' — V a quadratic-like map).
L IWE(VIV\Kn)llL < 3IWEL(VO\ Kn)llz + C(N).
2. [WERY (VN Ka)lle = [WEF (VO Kl = C(N).

3. IWEA (VT Ka)llf <
2- 227 [Wen (Vo \ Kn) I [PVER" (Vo \ Kl
+ C(r,N).

1&2 = [[Ween (VT \ Ka)ll = (W (VO \ Kn)lls = C(N)

can

&3 = [Wen(VO\Kn)ll > 27 WEL (VO Kn)ll — C(N).



The Arrow Relation
Suppose that U C V, and 5 € A(V), and «; € A(U). We say that

(i) — B

if 5 has a representative b that restricts to (a;) representing («;).



The Art of Domination

Suppose that U C V, and X € WA(U), Y € WA(V). We say

that X — Y if
X = Zwijaij

Y < Z Vi3

Vi (aj); — Bi

. -1 -1
Vi ZW,-J- <v .

and

and



Domination and Restriction

Suppose that U C V (and m1(U) — m1(V) is surjective), and F is
a proper partial foliation of V. Then

W(Flu) — W(F).
Corollary

Wcan(U) -0 Wcan(v) - 6‘X(U)|



The Pullback Diagram

Let Xk = Wh (VK — Kn) — gn(k), where gy(0) = 0 and
gn(k) = 3N(gn(k) 4+ 2). Then the following diagram holds:

X3 < X? < Xt < X

32 Pl e

F* X2 Fr X! £ X



The Pullback Diagram

Let Xk = Wh (VK — Kn) — gn(k), where gy(0) = 0 and
gn(k) = 3N(gn(k) 4+ 2). Then the following diagram holds:
X3 < X? < Xt < X

f*X? Xt X
We will show that this diagram implies that
x™ < Lxo,

2



From horizontal arcs to the Hubbard tree

We can find 0 < k < k+ 1 < 3N such that

supp X*T1 = supp X*.
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From horizontal arcs to the Hubbard tree

We can find 0 < k < k+ 1 < 3N such that

supp X*T1 = supp X*.

Then for every 3 € supp XX, we can find (a;) € f* supp X* such
that (o) — 0.
Then for every vertical v € A(C — Ky),

<7,suprk> =0 = <f*’y,suprk> =0.

Then <n, supp Xk> = 0 for every external ray 7 to Cy.

Let H, C A"(C — Ky) be those arcs that do not intersect any
external ray from K. Then supp X3V c Xk c H,.

We say that supp X3V is aligned with the Hubbard tree.



Arcs “aligned with the Hubbard tree”



The straight-arrow relation

For 5 € H,, we say that («;) — [ if («;) is the shortest sequence
in f**H, such that (a;) — 3. For each 3 and k there is a unique
such sequence («;).



The straight-arrow relation

For 5 € H,, we say that («;) — [ if («;) is the shortest sequence
in f**H, such that (a;) — 3. For each 3 and k there is a unique
such sequence («;).

Theorem
If (a;) — B and the a; € F*N*H, then #(a;) > 2.



Weighted arc diagrams restricted to a single Ky (/).

Let
X|p,= Y X(a).
D;eda
Then
supX4N < 2inf X3V,
D; D;
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The Fundamental Theorem

Suppose (;) — (3 where the a; € f™N*H, and 3 € H..
Suppose that X, Y € WA(C — Ky) are supported in H, and
V=X — Y.

Then

~ sup(X|p)-

Corollary

We have
XNl < 27Hx3N) (< 27HIXO ).

(because f3N*X4N o X7m))



The picture for the fundamental theorem
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