Separability of finite field extensions

J. Lubin

The aim is to show as quickly as possible that within a larger field Φ , the set of elements separable over a field k is itself a field.

Definition 1. Let α be an element that is algebraic over the field k. Then α is separable over k if the minimal polynomial for α over k, $Irr(\alpha, k[X])$, has no repeated roots.

Definition 2. Let $K \supset k$ be a finite-degree extension of fields. Then the separable degree of the extension, written $[K:k]_s$, is the number of distinct k-morphisms of K into an algebraically closed field $\Omega \supset k$.

It should be clear that this number (or cardinality) does not depend on the choice of Ω , and that an algebraic closure of k will suffice. We will see further on that $[K: k]_s \leq [K: k]$.

Definition 3. If $K \supset k$ is a finite-degree extension of fields, then the extension is *separable* if the separable degree is equal to the field extension degree.

Proposition 1. Let α be an element algebraic over the field k. Then α is separable over k if and only if $k(\alpha)$ is a separable extension of k.

Indeed, say that $[k(\alpha): k] = n$ and the roots of the degree-*n* polynomial $\operatorname{Irr}(\alpha, k[X])$ are distinct, say $\{\alpha_1 = \alpha, \alpha_2, \cdots, \alpha_n\}$, all lying in some algebraically closed field Ω . Then each *k*-morphism of k[X] sending *X* to α_i has the same kernel, namely $(\operatorname{Irr}(\alpha, k[X]))$, and we have induced *n* distinct *k*-morphisms of $k(\alpha)$ into Ω . There will be no others, cause α certainly must go to some root of $\operatorname{Irr}(\alpha, k[X])$.

On the other hand, if $k(\alpha)$ is separable over k, the n distinct k-morphisms of this field into Ω must each send α to a root of the minimal polynomial, and each of these morphisms is entirely determined by the image of α . Thus the images of α under the various morphisms all are different. **Lemma 2.** Let Ω be a field containing k and K, where $K \supset k$ is a finitedegree extension, and let σ be any automorphism of Ω . Then $[K:k]_s = [\sigma(K):\sigma(k)]_s$.

Recall that if Ω is an algebraically closed field, then any morphism $k \to \Omega$ may be extended to an algebraic extension $K \supset k$.

Proposition 3. Let $L \supset K \supset k$ be an extension of fields with $[L:k] < \infty$. Then $[L:k]_s = [L:K]_s \cdot [K:k]_s$.

Let Ω be an algebraically closed extension of L, and let $\varphi \colon K \to \Omega$ be a k-morphism. Then φ may be extended to $\varphi' \colon L \to \Omega$, and the number of $\varphi'(K)$ -morphisms of $\varphi'(L)$ into Ω is $[\varphi'(L) \colon \varphi'(K)]_s = [L \colon K]_s$. Count up all the k-morphisms of L into Ω , and get $[K \colon k]_s \cdot [L \colon K]_s$.

Corollary 4. Let $L \supset K \supset k$ with $[L: k] < \infty$. If $K \supset k$ and $L \supset K$ are separable extensions, then so is $L \supset k$.

Notice now that for a simple extension $k(\alpha) \supset k$, we certainly have the inequality $[k(\alpha): k]_s \leq [k(\alpha): k]$. Then the multiplicativity of separable degree implies:

Proposition 5. For a finite extension $K \supset k$, the inequality $[K:k]_s \leq [K:k]$ holds.

Corollary 6. Let $L \supset k$ with $[L: k] < \infty$. If L is separable over k, then so are the extensions $L \supset K$ and $K \supset k$.

Theorem 7. Let $K \supset k$ be a finite extension. Then K is separable over k if and only if every element of K is separable over k.

First, suppose that K is separable over k. Then $k(\alpha) \supset k$ is separable, so that α is a separable element. On the other hand, suppose that every element $\alpha \in K$ is separable over k. Take a finite generating set $\{\beta_1, \dots, \beta_m\}$ for K over k and consider the chain of simple extensions

$$K_0 = k \subset K_1 \subset \cdots \subset K_{m-1} \subset K_m = K,$$

where $K_i = K_{i-1}(\beta_i)$ for $1 \le i \le m$. Since β_i is separable over k, the roots of $\operatorname{Irr}(\beta_i, k[X])$ are simple; but $\operatorname{Irr}(\beta_i, K_{i-1}[X])$ is a factor of that, and so its roots are simple. Thus $K_i \supset K_{i-1}$ is separable, and the whole tower is separable.

The same kind of argument shows:

Theorem 8. Let $K \supset k$ be a finite separable extension, and let $F \supset k$ be an extension, with both K and F contained in a field Ω . Then FK is separable over F.

For, if we take a tower of simple extensions between k and K, as we did in the previous proof, the corresponding elements give a tower of simple extensions between F and FK. Since the minimal polynomial for β_i over $F(\beta_1, \dots, \beta_{i-1})$ is a factor of the minimal polynomial for β_i over $k(\beta_1, \dots, \beta_{i-1})$, this simple extension is separable as well. So the total extension $F \subset FK$ is separable.

Theorem 9. Let $K \supset k$ and $L \supset k$ be finite separable extensions. Then KL is separable over k.

Follows directly from Corollary 4 and Theorem 8.

Corollary 10. If α and β are separable over k, the field $k(\alpha, \beta)$ is separable over k.

Corollary 11. If $K \supset k$ is an algebraic extension of fields, the set of elements of K that are separable over k is a field.

We may call this field the maximal separable extension of k in K.

Corollary 12. Let $K \supset k$ be an algebraic extension of fields, and let k^s be the maximal separable extension of k in K. If k^s is finite over k, then $[k^s:k] = [K:k]_s$.

Perhaps this requires a proof. Maximality of k^s in K means that every k-morphism of k^s into an algebraically closed field has exactly one extension to K. Thus $[K : k^s]_s = 1$. The result follows from multiplicativity of the separable degree and the fact that $[k^s : k] = [k^s : k]_s$.