
ERRATA AND SUPPLEMENTARY MATERIAL FOR

A FRIENDLY INTRODUCTION TO NUMBER THEORY

FOURTH EDITION

JOSEPH H. SILVERMAN

Acknowledgements Page vii
Thanks to the following people who have sent me comments and corrections to
the fourth edition: Benjamin Atchison, David Bainum, Joseph Bak, Chase Banta,
Matt Baker, Jennifer Beineke, Wei-Chih Chung, Somjit Datta, Jason Dyer, Derek
Garton, Nezih Geckinli, Jacob Hicks, Jyotiraditya A. Jadhav, Suzuki Jiro, Mizan
Khan, David Krumm, Thomas Kurian, Joey Lee, Binlong Li, Zhulin Li, SongSong
Lu, Sam McCoy, Colm Mulcahy, Wang Periagoge, John Perry Alexey Rastegin,
Arvind Suresh, Chris Towse, Arianna Zikos.

Cover picture
The picture on the cover was chosen by the publisher, who told me that it is a
“Lehmer sieve,” which is a mechanical device for factoring numbers (dating from be-
fore electronic computers were invented). See https://en.wikipedia.org/wiki/

Lehmer_sieve.

Page ix, Chapter Dependencies
Chapter 29 is not in the picture. The box that says 27–28 should say 27–29.

Page ix, Chapter Dependencies
Theorem 35.4 (Gaussian Prime Theorem) in Chapter 35 requires the Sums of Two
Squares Theorem in Chapter 24 and also uses Quadratic Reciprocity from Chapter
21 (although only the easy fact that if p ≡ 3 (mod 4), then −1 is not a square
mod p). Of course, the Sums of Two Squares Theorem uses the converse. So it
should be noted in the dependency diagram that the last part of Chapter 35 uses
Chapters 21 and 24.

Page 9
The anecdote about Gauss should be described as “possibly apocryphal”. There’s
an interesting discussion of the story at http://www.americanscientist.org/
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2 FRINT ERRATA — 4TH EDITION

Page 23, Exercise 3.1
The text says that we get every Pythagorean triple (a, b, c) with b even from the
formula

(a, b, c) = (u2 − v2, 2uv, u2 + v2).

This is false, for example we cannot get (9, 12, 15) from this formula. What is true
is that we get every primitive Pythagorean triple (a, b, c) with b even, i.e., the triples
satisfying gcd(a, b, c) = 1.

Page 25, Exercise 3.5(f)
The procedure described in this exercise won’t give all square-triangular numbers,
since it essentially creates a new pair from an old pair by squaring u+ v

√
2, rather

than multiplying by a generator. (This is explained more fully later in the book
when we do Pell’s equation.)

Page 33
In the proof of the Euclidean algorithm, we first prove that rn is a common divisor
of a and b. We then need to prove that it is the greatest common divisor. The proof
of this starts by saying “Suppose that d is any common divisor of a and b” and
ends up concluding that “d divides rn.” The word “any” should be more heavily
stressed, because some readers may think that we’re proving:

There exists a common divisor d such that d divides rn.

But what we’re actually proving is:

For every common divisor d, the number d divides rn.

The latter statement implies that rn is greater than or equal to every common
divisor, which is what we want.

Page 35, Exercise 5.3
The conclusion should be that the Euclidean algorithm terminates in at most
2 log2(b) + 1 steps. One should also find an example of a pair (a, b) that takes
strictly more than 2 log2(b) steps.

Page 40
“We can create additional solutions by subtracting a multiple of b from x1 and
adding the same multiple of a onto y1 . In other words, for any integer k we obtain
a new solution (x1 +kb, y1−ka).” The first sentence needs to be reversed to match
the second sentence. So it should read “We can create additional solutions by
adding a multiple of b from x1 and subtracting the same multiple of a onto y1 . In
other words, for any integer k we obtain a new solution (x1 + kb, y1 − ka).”

Page 48–49, E-Zone
According to the definition, negative even numbers can be E-primes, too, for ex-
ample −2 and −6 are E-primes. But then 12 has two factorizations into E-primes,
12 = 2 · 6 = (−2) · (−6). So should stick to factorization of positive even numbers
into products of positive E-primes. Alternatively treat two factorizations as the
same if they arise from inserting pairs of minus signs.
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Page 52, Line above Question 1
The correct value is 3 · 1047 years. There are 365.25 days in a year, so a year is

365.25 · 24 · 60 · 60 ≈ 3.15576 · 107 seconds.

Hence checking 109 divisors per second, in order to check 1064 divisors, it would
take about

1064 divisors

(109 divisors/second) · (3.15576 · 107 seconds/year)
= 3.16881 · 1047 years.

Page 57, Paragraph 3
The text says “Our final task in this chapter is to. . . ,” but this is not actually the
final task, since there is also a theorem about roots modulo p. So it should say
“Our next task is to. . . ”

Page 60–62, Proof of Theorem 8.2
Since this is the books first proof by contradiction, it is probably worth also pointing
out that B0 is equal to A0, so that the condition that the leading coefficient not be
divisible by p is preserved.

Page 76, Line −13
“all this leads us to guess. . . ” should be “All this leads us to guess. . . ” (Capitalize
“All”.)

Page 80, Line 9 and following
The text says that “there is exactly one solution y1 with 0 ≤ y1 < n.” This is
true, but these y1 values do not necessarily give x1 values satisfying 0 ≤ x1 < mn.
Instead, we need to take −b/m ≤ y1 < n− b/m. So the material starting “We are
given. . . ” should be replaced with the following:

We are given that gcd(m,n) = 1, so the Linear Congruence Theorem of Chapter 8
tells us that there is exactly one solution y1 with

−fracbm ≤ y1 < n− b

m
.

Then the solution to the original pair of congruences is given by

x1 = my1 + b;

and this will be the only solution x1 with 0 ≤ x1 < mn, since there is only one y1
between −b/m and n− b/m, and we multiplied y1 by m to get x1.

Page 94, Line 9
The value of C is half of what it should be. Thus C is approximately equal
to 1.72032

Page 99, Table 14.1
New Mersenne prime: p = 57885161, discovered by Curtis Cooper, 2013 (as part
of GIMPS)
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Page 99, Table 14.1
New Mersenne prime: p = 74207281, discovered by Curtis Cooper, 2016 (as part
of GIMPS)

Page 99, Table 14.1
New Mersenne prime: p = 77232917, discovered by Jonathan Pace, 2017 (as part
of GIMPS)

Page 99, Table 14.1
New Mersenne prime: p = 82589933, discovered by Patrick Laroche, 2018 (as part
of GIMPS)

Page 125
There needs to be a convention for padding the final block of the message, or else
there is some ambiguity. With the current method, the final blocks “15” and “015”
and “00000015” would all be encrypted by a power of 15, so the person decrypting
the message won’t know which one it’s supposed to be. An easy solution is to pad
the final block with 0s on the right so that it’s always 8 digits.

Page 131 and following
The text says that a is a witness for n if

an 6≡ a (mod n).

But is that a witness for the prosecution or for the defense? So whenever we refer
to a number being a witness in Miller–Rabin, we should always explicitly say that
“a is a witness for the compositeness of n.”

Page 135, Line 6
“for each prime p dividing a” should be “for each prime p dividing n”

Page 145, New exercise related to Theorem 20.2
Suppose that we work in N = {1, 2, 3, . . .}, and we say that n ∈ N is an N-quadratic
residue if n = m2 for some m ∈ N, and otherwise it is an N-quadratic non-residue.
Theorem 20.2 proved that if we work mod p, then

QR×QR = QR, QR×NR = NR, NR×NR = QR .

Let’s write QRN for an N-quadratic residue and NRN for an N-quadratic non-residue.
Which of the relations

QRN×QRN = QRN, QRN×NRN = NRN, NRN×NRN = QRN .

are true, and which are not true? For the one(s) that are not true, where does the
proof of Theorem 20.2 go wrong?

Page 145, Line 6 of the proof of Theorem 20.2
“a1 = b21” should be “a1 ≡ b21 (mod p)”

Page 158, Line −2 (in Exercise 21.6)
“Using the material in this section” should be “Using the material in this chapter”
since the book has chapters, not sections.
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Page 167, last paragraph
“We conclude this section. . . ” should by “We conclude this chapter. . . ” since the
book has chapters, not sections.

Page 171, Chapter 23 (Proof of Quadratic Reciprocity)
This chapter, new to the 4th edition, contains one of the deepest and most difficult
proofs in the book. It might be helpful to describe the overall pattern of the proof
and to explain how one might be led, step-by-step, to finding it. See the end of this
document for a detailed description.

Page 172, Lines −6 and following
First, “each another” should be “each other.” Next, it has been suggested that the
use of e for ±1 is confusing. So replace the entire paragraph with the following:

Suppose that two of the rk values are either the same or negatives of each other,
say ri = ±rj with 1 ≤ i ≤ j ≤ P . Suppose first that ri = rj . Then

ia− ja = (pqi + ri)− (pqj + rj) = p(qi − qj),
so p divides (i− j)a. Similarly, if ri = −rj , then

ia+ ja = (pqi + ri) + (pqj + rj) = p(qi + qj),

so p divides (i + j)a. But p is prime and a is not divisible by p, so we conclude
that p divides one of i− j or i+ j. However

2 ≤ i+ j ≤ P + P = p− 1,

which shows that p does not divide i+ j. It follows that p divides i− j, and then
the fact that

−p− 3

2
= 1− P ≤ i− j ≤ P − 1 =

p− 3

2
shows that we must have i = j.

Page 174, Lines 7–8
“proof of quadratic identity” should be “proof of quadratic reciprocity”

Page 174, Proof of Lemma 23.3, Line −3 and −5
The < signs should be ≤. So Line −5 should read

ka = qkp+ rk with − P ≤ rk ≤ P.
And Line −3 should read

ka

p
= qk +

rk
p

with − 1

2
≤ rk

p
≤ 1

2
.

Page 177, Line 2
The last vertex of the triangle T ′(p, q) has its coordinates reversed. It should be
(p
2 ,

q
2 ), not ( q

2 ,
p
2 ). So this line should read:

“. . . in the triangle T ′(p, q) whose vertices are (0, 0), (0, q2 ), and (p
2 ,

q
2 ).”
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Page 180, New Exercise
There’s a very short clever proof of quadratic reciprocity, using only Euler’s for-
mula and the Chinese remainder theorem, due to G. Rousseau, On the quadratic
reciprocity law, J. Austral. Math. Soc. Ser. A 51 (1991), 423–425. The proof
is described completely in the accepted answer to the MathOverflow post http:

//mathoverflow.net/questions/1420/. This would make a good (worked) exer-
cise.

Page 192, Exercise 24.6(b)
The descent procedure might fail in that r might be zero. For example, you could
start with 102 + 152 = 5 · 652. So

A = 10, B = 15, c = 65, M = 5.

Then u = v = 0. Maybe it would work to add a step saying that if gcd(A,B) > 1,
then divide both sides by gcd(A,B)2 and use the descent process to write a factor
of c as a sum of two squares. Then that piece can be removed from c, and repeat
the process.

Page 192, Exercise 24.6(c)
It should be “which step,”, not “which set”.

Page 198, New Exercise for Chapter 25
25.8. Exercise 2.4 asked you to find values of c that belong to two or three different
primitive Pythagorean triples. Using the tools that we developed in this chapter,
prove that for every N there is a value of c that belongs to at least N different
primitive Pythagorean triples.

Page 204, Exercise 26.4
The polynomial should be

F (x) = x2 − x+ 41,

not F (x) = x2 − x− 41.

Page 217, Costas Arrays
According to Wikipedia, Welch’s construction of Costas arrays using primitive roots
was a rediscovery. The method was originally discovered by E. Gilbert; see en.

wikipedia.org/wiki/Costas_array.

Page 211, Line 1
“If a and p are relatively prime” should say “If p is prime and a and p are relatively
prime”. (Although by this point in the book, most readers will probably realize
that the letter p is prime unless we say otherwise!)

Page 223, Exercise 28.18
The mathematician’s name is (Solomon W.) Golomb, not Golumb.
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Pages 226–227, Chapter 29 on Primitive Roots and Indices
It’s a big jump to go from solving the linear congruence 19x ≡ 23 (mod 37) to
solving the non-linear congruence 3x30 ≡ 4 (mod 37) Maybe could lead into this
with examples or an exercise (could even be in an earlier chapter) to solve

3x2 ≡ 4 (mod 37), 3x3 ≡ 4 (mod 37), 3x4 ≡ 4 (mod 37), . . . .

The first revisits quadratic reciprocity and the others suggest asking how many
solutions there are. In Chapter 8 we proved that

3xd ≡ 4 (mod 37)

has at most d solutions. An interesting problem is to characterize those d for which
there are d solutions? Up to d = 10000, this occurs only for d ∈ {1, 2, 3, 4, 6, 12}.

Page 228, text
Both “discrete logarithm” and “Discrete Logarithm Problem” should be added to
the index.

Page 229 and elsewhere
The preferred spelling is “Elgamal”, not “ElGamal”.

Page 232, Lines 6–8
The books says that “If x, y, and z have a common factor, we can factor it out and
cancel it, so we may as well assume that they are relatively prime.” It’s actually a
little subtler, since z only appears squared. So replace with the following:

If x, y, and z have a common factor, say g, then g4 divides x4 + y4, so g4

divides z2, so g2 divides z. Then dividing by g4 gives a smaller solution in integers,
namely (x/g)4 + (y/g)4 = (z/g2)2. So we may as well assume that x, y, and z have
no nontrivial common factors.

Page 240, Lines −11 and −7
The inequalities in these displayed equations should be 3 ≤ s < u and 3 ≤ q < s,
respectively.

Page 255, Figure 33.1
Pigeon 5 should be 0.02776, not 0.02778.

Page 255, Line −3
The value of m is allowed to be 0, so the string of inequalities should read 0 ≤ m <
n ≤ Y .
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Page 267, Chapter 35 and Theorem 24.1
The hard part of Theorem 24.1 is the proof that

(∗) p ≡ 1 (mod 4) =⇒ p = a2 + b2.

It could be pointed out in Chapter 35 that once we know about factorization in Z[i],
then we can prove (∗) directly as follows: Let g be a primitive root modulo p. Then

g(p−1)/2 ≡ −1 (mod p) and g(p−1)/4 6≡ −1 (mod p)

We are given that

g = 4k + 1, and hence g2k ≡ −1 (mod p) and gk 6≡ −1 (mod p)

Thus
g2k + 1 = pr for some r ∈ Z.

We factor this in Z[i] as
(gk + i)(gk − i) = pr.

We claim that p does not divide either gk + i or gk − i (working in Z[i]). To see
why, suppose that gk + i = pα. Taking complex conjugates gives gk − i = pα, and
multiplying gives

g2k + 1 = p2 ·N(α).

Thus
g(p−1)/2 ≡ −1 (mod p2),

which is unlikely (this is a Wieferich-type condition), but not impossible. So this
is not quite a complete proof, but possibly it could be completed with another step
or two. Assuming that p does not divide gk± i, it follows that there is a factor of p
in each of gk + i and gk − i, so in particular p is reducible. (We’re using that every
element factors into irreducible elements, which is proven in Chapter 36; but that’s
the easier part of the unique factorization theorem.) Therefore p = (a+ bi)(c+ di),
where neither factor is ±1 or ±i. Taking complex conjugates and multiplying (or
taking norms, if you prefer), we get

p2 = (a2 + b2)(c2 + d2),

where neither factor is ±1. Hence each factor is equal to p, so p = a2 + b2.

Page 270, Line 3
There’s an extraneous minus sign in this displayed equation. It should read

600 = i · (1 + i)6 · 3 · (2 + i)2 · (2− i)2.

Page 283, Line 18, Second Displayed Equation
With the conventions we’re using, the factors are in the reverse order. So this
display should read

237 + 504i = (15− 17i)(−10 + 23i) + (−4− 11i).
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Page 274, Line after 4th displayed equation
After the line

(a2 + b2)(c2 + d2) = N(α),

it says “This is an equation in integers.” Since the elements of Z[i] are also integers,
i.e., Gaussian integers, it would be clearer to say “This is an equation in ordinary
integers.”

Page 279, Exercise 35.4(a)
In the hint, change “then square the left-hand side” to “then expand the left-hand
side”.

Page 298, First paragraph of proof of Theorem 37.1
It says “As noted in Chapter 36”. It should be “As noted in Chapter 8”, since
proof by contradiction is first discussed and used in Chapter 8.

Page 300, Line 4
“X2 − p has no roots” should be “X2 − p has no rational roots”.

Page 303, Line 12
“If α is an algebraic number, that is, if α is a root of a polynomial. . . ” should
be “If α is an irrational algebraic number, that is, if α is an irrational root of a
polynomial. . . ,” since obviously if α is rational, then there is a rational number
close to α, namely α itself. On the other hand, note that Liouville’s Inequality
(Theorem 37.2), as we have stated it, is true even if α is rational.

Page 307, Lines 9–10
This inequality is not quite right. It should read

|r4 − β| < 2 · 10−20 = 2/b54.

Page 317–318
Due to the way that the binomial coefficient is defined on Page 314, the discussion
on Pages 317–318 describes the computation of

(
n

n−k
)
, not

(
n
k

)
. In lieu of rewriting

this material, one can discuss the symmetry property before Theorem 38.2, being
sure to that 0! = 1 to handle the case the k = 0.

Page 333, Paragraph preceding Theorem 39.2
The sentence “However, if p is congruent to 1 or 4 modulo p” should be “However,
if p is congruent to 1 or 4 modulo 5”.

Page 349, Problem 40.2
The hi are allowed to be negative, so we need to put absolute value signs into the
formula. Thus

f1(n) + f2(n) = g1(n) + g2(n) +O
(

max
{∣∣h1(n)

∣∣, ∣∣h2(n)
∣∣}).



10 FRINT ERRATA — 4TH EDITION

Page 376, Line −8
The formula for R(p) is R(p) = 4(D1 − D3). So for a prime p that is congruent
to 1 modulo 4, the divisors 1 and p of p are 1 modulo 4, so we have D1 = 2
and D3 = 0. Hence R(p) = 8, and as indicated, the 8 is accounted for by first
writing p = A2 +B2, and then switching A and B and/or changing the signs of one
or both of A and B.

Page 397+, Index
The index still includes entries for the Foxtrot cartoons that, sadly, were removed
from the 4th edition at the insistence of the publisher.

Suggested Additional Chapter
It has been suggested to add a chapter on factorization methods that exploit x2 ≡ y2
(mod N). This could include sieves and/or the continued fraction method as a
followup to Chapters 39 and 40 on continued fractions.

Suggested Additional Chapter
Possibly include a short chapter on Hadamard matrices. These are n-by-n matri-
ces A with all entries ±1 whose columns are pairwise orthogonal. Equivalently,
such that |detA| = nn/2 takes the largest possible value among matrices whose
entries all have absolute value 1. Not hard to show that if n ≥ 3, then must
have 4 | n. There’s a construction for infinitely many n that uses Legendre sym-
bols, so a nice application of the multiplicativity of the Legendre symbol. It is not
known whether Hadarmard matrices exist for all n, although experimental evidence
suggests that they do. (Note: It is not necessary to know about determinants to
define a Hadamard matrix. A Hadamard matrix may be defined to be a list of n vec-
tors v1, . . . ,vn ∈ Rn whose entries are all ±1 and with the property that vi ·vj = 0
for all i 6= j.)
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Page 171, Chapter 23, Further Explanation for the Proof of Quadratic
Reciprocity
Here is a description of the overall pattern of the material in Chapter 23, including
intuition on how one might be led, step-by-step, to finding it.

The proof may be divided into five main components:
Step 1. Euler’s formula a(p−1)/2 ≡

(
a
p

)
(mod p)

Fermat’s little theorem says that ap−1 ≡ 1 (mod p), so it is natural to look at
the quantity at a(p−1)/2 (mod p). The fact that a(p−1)/2 (mod p) squared is equal
to 1 implies that a(p−1)/2 ≡ ±1 (mod p). Further, if a is a quadratic residue, say
a ≡ b2 (mod p), then

a(p−1)/2 ≡ (b2)(p−1)/2 ≡ bp−1 ≡ 1 (mod p).

This, and experiments, suggest that if a is a non-residue, then a(p−1)/2 (mod p)
equals −1, which leads to Euler’s formula.
Step 2. Gauss’ criterion

In view of Euler’s formula, we want to get our hands on the quantity a(p−1)/2

(mod p). Looking back at our proof of Fermat’s little theorem, we took the multiples
a, 2a, . . . , (p − 1)a of a modulo p and multiplied them together. This got us ap−1,
which was good, multiplied by (p−1)!, which we were able to cancel. So in order to
get a(p−1)/2 (mod p), we might try multiplying half of the multiples together, i.e.,
let P = (p − 1)/2 and multiply a, 2a, . . . , Pa. This gives the desired aP (mod p),
multiplied by P !. We can again cancel the P !, and counting the number of minus
signs gives Gauss’ criterion.
Step 3. A sum associated to Gauss’ criterion

Okay, now we’re looking at a, 2a, . . . , Pa, and we want to reduce these numbers
modulo p into the range from −P to P and count how many are negative. As in the
proof of Lemma 23.2, which came up naturally when we proved Gauss’ criterion,
we write each multiple ka as

ka = pqk + rk with −P ≤ rk ≤ P ,

and we want to count how many of the rk are negative. We note that

ka

p
= qk +

rk
p

with −1

2
<
rk
p
<

1

2
,

so ⌊
ka

p

⌋
=

{
qk if rk > 0,

qk − 1 if rk < 0.

This gives the crucial equation (which appears in the proof of Lemma 23.3)

P∑
k=1

⌊
ka

p

⌋
=

P∑
k=1

qk −
(

number of k such that
rk is negative

)
.

Since we only need to know whether the number of negative rk is odd or even, we

are led to study the sum
∑P

k=1 qk modulo 2. And after some experimentation and
some work, we figure out that the sum is always even, which when combined with
Gauss’ criterion, gives the interesting formula

P∑
k=1

⌊
ka

p

⌋
≡

{
0 (mod 2) if

(
a
p

)
= 1,

1 (mod 2) if
(
a
p

)
= −1.
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Step 4. Relating a sum to a triangle
Suppose that we graph the points in the sum appearing in Step 3, i.e., we graph

the points (
1,

⌊
a

p

⌋)
,

(
2,

⌊
2a

p

⌋)
,

(
3,

⌊
3a

p

⌋)
, . . . ,

(
P,

⌊
Pa

p

⌋)
.

These points lie just below the line y = a
px, and if we want to add up their y-

coordinates, that’s the same as counting how many points with integer coordinates
lie below each one. In other words, the sum that we want to compute is equal to
the number of points with integer coordinates that lie inside the triangle formed by
the x-axis, the line x = P , and the line y = a

px.

Step 5. Using two triangles to form a rectangle
Quadratic reciprocity is a relation between

(
p
q

)
and

(
q
p

)
, so we want to compare

the sums
(p−1)/2∑

k=1

⌊
kq

p

⌋
and

(q−1)/2∑
k=1

⌊
kp

q

⌋
.

Step 4 says that each of these sums is the number of points in a certain triangle.
If you draw these triangles and stare at them for a while, you’ll say “Hey, if I flip
over the second triangle and put it on top of the first triangle, I get a rectangle.”
But it’s easy to count the number of points with integer coordinates in a rectangle,
and doing so completes the proof of quadratic reciprocity.


