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Notations and set up

e K = field with characteristic 0
e K = algebraic closure of K

o f,g € K(z) are equivalent if there exists a linear
fractional transformation 0 € K such that f = o 0 g.
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A Case of the B. and M. Shapiro Conjecture

Theorem (Eremenko-Gabrielov)

If f € C(z) is a rational function with only real critical

points, then f is equivalent to a rational function with real
coefficients.




e Goldberg: There are at most
1/2d —2
p(d) ':E(d—1)

equivalence classes of degree d rational functions
with a given set of critical points.
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e Goldberg: There are at most

1/2d —2
p(d) '_E(d—1)
equivalence classes of degree d rational functions
with a given set of critical points.

e Eremenko and Gabrielov: Using topological,
combinatorial, and complex analytic techniques
construct exactly p(d) real rational functions with a
given set of real critical points.

e But! The relationship between a rational function and
its critical points is purely algebraic, via the roots of
the derivative.

e This leads to the following question:



Motivation
[e]e] ]

Is there a truly elementary proof of the Eremenko and

Question:
Gabrielov’s result? |




Proof for cubic functions

Corollary (Faber, T.)

Using only algebraic techniques we can show, if f € C(z)
is a degree 3 rational function with only real critical points,
then f is equivalent to a rational function with real
coefficients.
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Corollary (Faber, T.)

Using only algebraic techniques we can show, if f € C(z)
is a degree 3 rational function with only real critical points,
then f is equivalent to a rational function with real
coefficients.
Note:

e The quadratic case is trivial over any field.

e If f € K(z) has critical points ¢;, ¢, € P'(K), ¢y # oo,

2
then either f = <ﬂ> or f=(z—cy)2

Z—Co
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points.
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Proof for cubic functions

@ Riemann Hurwitz = f has at most 2d — 2 = 4 critical
points.

e f can not be unicritical (Faber).

e f has 2 or 3 distinct critical points = at least one
critical point is totally ramified.

e f has 4 distinct critical points.



Proof for cubic functions

Normal form for cubic

e We begin with a normal form for cubic functions. For
ue K~ {-1,-2}, define

_ z%(z + u)
"2 = Gui sz (ur2)

(1)

e This function has the property that it fixes 0, 1, and oo,
and each of these three points is critical.



Proof for cubic functions

Normal form for cubic

@ We begin with a normal form for cubic functions. For
ue K~ {-1,-2}, define

z%(z + u)

u(2) = (2u+3)z— (u+2) )

e This function has the property that it fixes 0, 1, and oo,
and each of these three points is critical.

Lemma

A cubic rational function that is critical at 0, 1, and co is
equivalent to a unique f,, and the fourth critical point is

o(u) = _Uzlﬁjrzs'




Proof for cubic functions

Proposition

If f, € K(z) is equivalent to a rational function with
K-coefficients, then u € K.




Proof for cubic functions

Algebraic Condition

Definition
For a field K and rational function ¢ € K(z), we say K is
o-perfect if the map ¢ : P'(K) — P'(K) is surjective.




Proof for cubic functions

Theorem (Faber, T.)

Let K be a field of characteristic zero with algebraic
closure K. The following statements are equivalent:

1. Any cubic rational function f € K(z) with K -rational

critical points is equivalent to a rational function in
K(z).

2. K is ¢-perfect, where ¢(z) = —z 22

2z+3"°
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#(2) = -z

(1) = (2).

e Take y € K. Solve the equation ¢(u) = y with u € K.
If y = oo, then we may take u = —3/2
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Proof for cubic functions

#(2) = -z

(1) = (2).

e Take y € K. Solve the equation ¢(u) = y with u € K.
If y = oo, then we may take u = —-3/2

e Otherwise, choose u € K such that ¢(u) = y.

e Then the function f, has K-rational critical points
{0,1, 00, y}.

e Since f, is equivalent to a rational function with
K-coefficients, the proposition implies that u € K.
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Proof for cubic functions

(2) = (1).

@ Suppose that f has at least three critical points.
WLOG, assume that 0, 1, and oo are among them.

e By the lemma, f is equivalent to f, for some u € K.

@ The remaining critical point is ¢(u). By assumption,
both solutions of ¢(z) = ¢(u) lie in P'(K), so that
u € K. That s, f is equivalent to a rational function
with K-coefficients.
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Proof for cubic functions

0(2) = —2555

Corollary (Faber, T.)

Using only algebraic techniques, we can show if f € C(z)
is a cubic rational function with only real critical points,
then f is equivalent to a real rational function.

Proof.
R is ¢-perfect for ¢ as in the theorem.

@ ¢(—3/2) = o0, and if y € R, then the equation
¢(z) = y is equivalent to a quadratic equation with
discriminant 4(y> —y + 1) = (2y — 1)+ 3 > 0.

@ Hence ¢(z) = y has a real solution.
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Question:
Are there other fields K for which our corollary will hold?
That is can we show there are other fields K which are

¢-perfect, where ¢(z) = — Zzzthz3 2




Other fields?

e Number fields are not ¢-perfect for any ¢ with
deg(¢) > 2. We can show this using a canonical
height argument.

o If 9(2) = —z2Z% | the field Q, is ¢-perfect iff p = 3.

22+3 ’
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Proof for p > 3.

o The resultant of ¢(z) = —z£% is 3 = reduced

modulo p to yield a quadratic function ¢ € Fp(2).
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Proof for p > 3.

o The resultant of ¢(z) = —z£% is 3 = reduced

modulo p to yield a quadratic function ¢ € Fp(2).

o Note that ¢(0) = $(—2), so that ¢ is not injective on
P'(Fp).

e Since this is a finite set, ¢ also fails to be surjective.
Choose y € IF, such that ¢(z) = y has no solution in
]Fp-

@ By Hensel's lemma, it follows that ¢(z) = y has no
solution in Z, for any y € Z, such that y = y (mod p).

[l




Other fields?

Proof continued.
@ It remains to show that ¢(z) = y has no solution in
Qp \ Zp.
o If ¢(x) = y with |x|, > 1, then

1+2/x

53 a/x| X1

o

60|, = IXlp-

which contradicts y € Z,. Hence ¢(z) = y has no
solution in P'(Qp), and we have proved that Q,, is not
¢-perfect.

[l
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Further Thoughts

@ A general rational function of degree d has 2d + 1
free parameters (coefficients) and 2d — 2 critical
points.

e Imposing the condition that 0, 1, co are fixed and
critical reduces to 2d — 5 free parameters.

e Fix a set of critical points. The Wronskian gives
2d — 5 free coefficients for the function satisfying
2d — 5 quadratic equations in 2d — 5 variables over K.

e d =3:2d — 5 = 1. Express the remaining critical
point as a function of the free parameter.

e Is it possible to solve for the critical points as explicit
functions of parameters for d > 3?
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Further Thoughts continued

e Bézout's Theorem gives an upper bound of 229-5
solutions for a general system of 2d — 5 conics, while
Goldberg bounds the number of distinct solutions by
the smaller quantity

1(2d-2) 8 g
d\d—1) " Jrd®2°
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Further Thoughts continued

e Bézout's Theorem gives an upper bound of 229-5
solutions for a general system of 2d — 5 conics, while
Goldberg bounds the number of distinct solutions by
the smaller quantity

1(2d-2) 8 g
d\d—1) " Jrd®2°

e This suggests a substantial amount of extra structure
in our system of equations, which may make progress
possible.
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Quartic

Example
() - (z* + az® + bz?)
- cz2+dz+1+a+b-c—d
where d — (3a%+5ab+2b%—2ac—2bc+7a+6b—2c+4)

. . a+b+1
The critical points are:

ti = —(ac+9a+6b—4c+12)/(2c)
t, = (6a° + 4ab — 3ac + 9a + 2b)/(2¢)
lz=—-b(a+b—-c+3)/c
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THANK YOU! ]
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