# A Very Elementary Proof of a Conjecture of B. and M. Shapiro for Cubic Rational Functions

Xander Faber and Bianca Thompson\*

Smith College

January 2016

- K = field with characteristic 0
- $\overline{K}$  = algebraic closure of K
- *f*, *g* ∈ *K*(*z*) are *equivalent* if there exists a linear fractional transformation *σ* ∈ *K* such that *f* = *σ* ∘ *g*.

Other fields?

## A Case of the B. and M. Shapiro Conjecture

## Theorem (Eremenko-Gabrielov)

If  $f \in \mathbb{C}(z)$  is a rational function with only real critical points, then f is equivalent to a rational function with real coefficients.

| Notations and set up | Motivation<br>○●○ | Proof for cubic functions | Other fields? |
|----------------------|-------------------|---------------------------|---------------|
|                      |                   |                           |               |

$$\rho(d) := rac{1}{d} \begin{pmatrix} 2d-2\\ d-1 \end{pmatrix}$$

equivalence classes of degree d rational functions with a given set of critical points.

| Notations and set up | Motivation<br>○●○ | Proof for cubic functions | Other fields? |
|----------------------|-------------------|---------------------------|---------------|
|                      |                   |                           |               |

$$\rho(d) := rac{1}{d} \begin{pmatrix} 2d-2\\ d-1 \end{pmatrix}$$

equivalence classes of degree d rational functions with a given set of critical points.

 Eremenko and Gabrielov: Using topological, combinatorial, and complex analytic techniques construct exactly ρ(d) real rational functions with a given set of real critical points.

| Notations and set up | Motivation<br>o●o | Proof for cubic functions | Other fields? |
|----------------------|-------------------|---------------------------|---------------|
|                      |                   |                           |               |

$$\rho(d) := rac{1}{d} \begin{pmatrix} 2d-2\\ d-1 \end{pmatrix}$$

equivalence classes of degree d rational functions with a given set of critical points.

- Eremenko and Gabrielov: Using topological, combinatorial, and complex analytic techniques construct exactly ρ(d) real rational functions with a given set of real critical points.
- **But!** The relationship between a rational function and its critical points is purely algebraic, via the roots of the derivative.

| Notations and set up | Motivation<br>o●o | Proof for cubic functions | Other fields? |
|----------------------|-------------------|---------------------------|---------------|
|                      |                   |                           |               |

$$\rho(\boldsymbol{d}) := \frac{1}{\boldsymbol{d}} \binom{2\boldsymbol{d}-2}{\boldsymbol{d}-1}$$

equivalence classes of degree d rational functions with a given set of critical points.

- Eremenko and Gabrielov: Using topological, combinatorial, and complex analytic techniques construct exactly ρ(d) real rational functions with a given set of real critical points.
- **But!** The relationship between a rational function and its critical points is purely algebraic, via the roots of the derivative.
- This leads to the following question:

## **Question:**

## Is there a truly elementary proof of the Eremenko and Gabrielov's result?

| Notations and set up | Motivation | Proof for cubic functions | Other fields? |
|----------------------|------------|---------------------------|---------------|
|                      |            |                           |               |

Using only algebraic techniques we can show, if  $f \in \mathbb{C}(z)$  is a degree 3 rational function with only real critical points, then f is equivalent to a rational function with real coefficients.

Using only algebraic techniques we can show, if  $f \in \mathbb{C}(z)$  is a degree 3 rational function with only real critical points, then f is equivalent to a rational function with real coefficients.

Note:

• The quadratic case is trivial over any field.

Using only algebraic techniques we can show, if  $f \in \mathbb{C}(z)$  is a degree 3 rational function with only real critical points, then f is equivalent to a rational function with real coefficients.

## Note:

- The quadratic case is trivial over any field.
- If  $f \in \overline{K}(z)$  has critical points  $c_1, c_2 \in \mathbb{P}^1(K), c_1 \neq \infty$ , then either  $f = \left(\frac{z-c_1}{z-c_2}\right)^2$  or  $f = (z - c_1)^2$ .

## • Riemann Hurwitz $\Rightarrow$ *f* has at most 2d - 2 = 4 critical points.



- Riemann Hurwitz  $\Rightarrow$  *f* has at most 2d 2 = 4 critical points.
- f can not be unicritical (Faber).



- Riemann Hurwitz  $\Rightarrow$  *f* has at most 2d 2 = 4 critical points.
- f can not be unicritical (Faber).
- *f* has 2 or 3 distinct critical points ⇒ at least one critical point is totally ramified.

- Riemann Hurwitz  $\Rightarrow$  *f* has at most 2d 2 = 4 critical points.
- f can not be unicritical (Faber).
- *f* has 2 or 3 distinct critical points ⇒ at least one critical point is totally ramified.
- f has 4 distinct critical points.



• We begin with a normal form for cubic functions. For  $u \in \overline{K} \setminus \{-1, -2\}$ , define

$$f_u(z) = \frac{z^2(z+u)}{(2u+3)z - (u+2)}.$$
 (1)

• This function has the property that it fixes 0, 1, and  $\infty$ , and each of these three points is critical.



• We begin with a normal form for cubic functions. For  $u \in \overline{K} \setminus \{-1, -2\}$ , define

$$f_u(z) = \frac{z^2(z+u)}{(2u+3)z - (u+2)}.$$
 (1)

• This function has the property that it fixes 0, 1, and  $\infty$ , and each of these three points is critical.

#### Lemma

A cubic rational function that is critical at 0, 1, and  $\infty$  is equivalent to a unique  $f_u$ , and the fourth critical point is  $\phi(u) = -u \frac{u+2}{2u+3}$ .

## Proposition

## If $f_u \in \overline{K}(z)$ is equivalent to a rational function with *K*-coefficients, then $u \in K$ .

Motivation

Proof for cubic functions

Other fields?

## **Algebraic Condition**

## Definition

For a field K and rational function  $\phi \in K(z)$ , we say K is  $\phi$ -**perfect** if the map  $\phi : \mathbb{P}^1(K) \to \mathbb{P}^1(K)$  is surjective.

#### Theorem (Faber, T.)

Let K be a field of characteristic zero with algebraic closure  $\overline{K}$ . The following statements are equivalent:

- 1. Any cubic rational function  $f \in \overline{K}(z)$  with K-rational critical points is equivalent to a rational function in K(z).
- 2. *K* is  $\phi$ -perfect, where  $\phi(z) = -z\frac{z+2}{2z+3}$ .

| Notations and set up | Motivation<br>000 | Proof for cubic functions | Other fields? |
|----------------------|-------------------|---------------------------|---------------|
|                      |                   |                           |               |

$$\phi(\mathbf{Z}) = -\mathbf{Z}\frac{\mathbf{Z}+\mathbf{Z}}{\mathbf{Z}+\mathbf{Z}+\mathbf{Z}}$$

## • Take $y \in K$ . Solve the equation $\phi(u) = y$ with $u \in K$ . If $y = \infty$ , then we may take u = -3/2

$$\phi(\mathbf{Z}) = -\mathbf{Z} \frac{\mathbf{Z}+\mathbf{Z}}{\mathbf{Z}+\mathbf{Z}+\mathbf{Z}}$$

- Take  $y \in K$ . Solve the equation  $\phi(u) = y$  with  $u \in K$ . If  $y = \infty$ , then we may take u = -3/2
- Otherwise, choose  $u \in \overline{K}$  such that  $\phi(u) = y$ .

$$\phi(\mathbf{z}) = -\mathbf{z}_{\frac{\mathbf{z}+\mathbf{2}}{2\mathbf{z}+\mathbf{3}}}$$

- Take  $y \in K$ . Solve the equation  $\phi(u) = y$  with  $u \in K$ . If  $y = \infty$ , then we may take u = -3/2
- Otherwise, choose  $u \in \overline{K}$  such that  $\phi(u) = y$ .
- Then the function  $f_u$  has *K*-rational critical points  $\{0, 1, \infty, y\}$ .

$$\phi(\mathbf{z}) = -\mathbf{z}_{\frac{\mathbf{z}+\mathbf{2}}{2\mathbf{z}+\mathbf{3}}}$$

- Take  $y \in K$ . Solve the equation  $\phi(u) = y$  with  $u \in K$ . If  $y = \infty$ , then we may take u = -3/2
- Otherwise, choose  $u \in \overline{K}$  such that  $\phi(u) = y$ .
- Then the function *f<sub>u</sub>* has *K*-rational critical points {0, 1, ∞, *y*}.
- Since *f<sub>u</sub>* is equivalent to a rational function with *K*-coefficients, the proposition implies that *u* ∈ *K*.

| Motivation<br>000 |  |
|-------------------|--|
|-------------------|--|

## $(2) \Rightarrow (1).$

## $\textbf{(2)}\Rightarrow\textbf{(1)}.$

Suppose that *f* has at least three critical points.
 WLOG, assume that 0, 1, and ∞ are among them.

## $\textbf{(2)}\Rightarrow\textbf{(1)}.$

- Suppose that *f* has at least three critical points.
   WLOG, assume that 0, 1, and ∞ are among them.
- By the lemma, *f* is equivalent to  $f_u$  for some  $u \in \overline{K}$ .

## $\textbf{(2)}\Rightarrow\textbf{(1)}.$

- Suppose that *f* has at least three critical points.
   WLOG, assume that 0, 1, and ∞ are among them.
- By the lemma, *f* is equivalent to  $f_u$  for some  $u \in \overline{K}$ .
- The remaining critical point is φ(u). By assumption, both solutions of φ(z) = φ(u) lie in P<sup>1</sup>(K), so that u ∈ K. That is, f is equivalent to a rational function with K-coefficients.

| Notations and set up | Motivation | Proof for cubic functions | Other fields? |
|----------------------|------------|---------------------------|---------------|
|                      |            |                           |               |
|                      |            |                           |               |

$$\phi(\mathbf{Z}) = -\mathbf{Z} \frac{\mathbf{Z}+2}{\mathbf{Z}+3}$$

Using only algebraic techniques, we can show if  $f \in \mathbb{C}(z)$  is a cubic rational function with only real critical points, then f is equivalent to a real rational function.

| Notations and set up | Motivation | Proof for cubic functions | Other fields? |
|----------------------|------------|---------------------------|---------------|
|                      |            |                           |               |
|                      |            |                           |               |

$$\phi(\mathbf{Z}) = -\mathbf{Z} \frac{\mathbf{Z}+\mathbf{Z}}{\mathbf{Z}+\mathbf{Z}+\mathbf{Z}}$$

Using only algebraic techniques, we can show if  $f \in \mathbb{C}(z)$  is a cubic rational function with only real critical points, then f is equivalent to a real rational function.

#### Proof.

 $\mathbb R$  is  $\phi\text{-perfect}$  for  $\phi$  as in the theorem.

| Notations and set up | Motivation<br>000 | Proof for cubic functions | Other fields? |
|----------------------|-------------------|---------------------------|---------------|
|                      |                   |                           |               |
|                      |                   |                           |               |

$$\phi(\mathbf{Z}) = -\mathbf{Z} \frac{\mathbf{Z}+\mathbf{Z}}{\mathbf{Z}\mathbf{Z}+\mathbf{Z}}$$

Using only algebraic techniques, we can show if  $f \in \mathbb{C}(z)$  is a cubic rational function with only real critical points, then f is equivalent to a real rational function.

#### Proof.

 $\mathbb{R}$  is  $\phi$ -perfect for  $\phi$  as in the theorem.

• 
$$\phi(-3/2) = \infty$$
, and if  $y \in \mathbb{R}$ , then the equation  $\phi(z) = y$  is equivalent to a quadratic equation with discriminant  $4(y^2 - y + 1) = (2y - 1)^2 + 3 > 0$ .

| fields? |
|---------|
|         |
|         |
|         |
|         |
|         |
|         |

$$\phi(\mathbf{Z}) = -\mathbf{Z} \frac{\mathbf{Z}+\mathbf{Z}}{\mathbf{Z}\mathbf{Z}+\mathbf{Z}}$$

Using only algebraic techniques, we can show if  $f \in \mathbb{C}(z)$  is a cubic rational function with only real critical points, then f is equivalent to a real rational function.

#### Proof.

 $\mathbb{R}$  is  $\phi$ -perfect for  $\phi$  as in the theorem.

- $\phi(-3/2) = \infty$ , and if  $y \in \mathbb{R}$ , then the equation  $\phi(z) = y$  is equivalent to a quadratic equation with discriminant  $4(y^2 y + 1) = (2y 1)^2 + 3 > 0$ .
- Hence  $\phi(z) = y$  has a real solution.

## **Question:**

## Are there other fields K for which our corollary will hold?

### **Question:**

Are there other fields *K* for which our corollary will hold? That is can we show there are other fields *K* which are  $\phi$ -perfect, where  $\phi(z) = -z\frac{z+2}{2z+3}$ ?  Number fields are not φ-perfect for any φ with deg(φ) ≥ 2. We can show this using a canonical height argument.

• If 
$$\phi(z) = -z \frac{z+2}{2z+3}$$
, the field  $\mathbb{Q}_p$  is  $\phi$ -perfect iff  $p = 3$ .

| Notations and set up | Motivation<br>000 | Proof for cubic functions | Other fields? |
|----------------------|-------------------|---------------------------|---------------|
|                      |                   |                           |               |
|                      |                   |                           |               |
|                      |                   |                           |               |

## Proof for p > 3.

The resultant of φ(z) = −z<sup>z+2</sup>/<sub>2z+3</sub> is 3 ⇒ reduced modulo p to yield a quadratic function φ̃ ∈ 𝔽<sub>p</sub>(z).

| Notations and set up | Motivation<br>000 | Proof for cubic functions | Other fields? |
|----------------------|-------------------|---------------------------|---------------|
|                      |                   |                           |               |

#### Proof for p > 3.

- The resultant of  $\phi(z) = -z \frac{z+2}{2z+3}$  is 3  $\Rightarrow$  reduced modulo p to yield a quadratic function  $\tilde{\phi} \in \mathbb{F}_p(z)$ .
- Note that  $\tilde{\phi}(0) = \tilde{\phi}(-2)$ , so that  $\tilde{\phi}$  is not injective on  $\mathbb{P}^1(\mathbb{F}_p)$ .

| Notations and set up | Motivation<br>000 | Proof for cubic functions | Other fields? |
|----------------------|-------------------|---------------------------|---------------|
|                      |                   |                           |               |
|                      |                   |                           |               |
|                      |                   |                           |               |
|                      |                   |                           |               |
|                      |                   |                           |               |

### Proof for p > 3.

- The resultant of φ(z) = -z<sup>z+2</sup>/<sub>2z+3</sub> is 3 ⇒ reduced modulo p to yield a quadratic function φ̃ ∈ F<sub>p</sub>(z).
- Note that  $\tilde{\phi}(0) = \tilde{\phi}(-2)$ , so that  $\tilde{\phi}$  is not injective on  $\mathbb{P}^1(\mathbb{F}_p)$ .
- Since this is a finite set, φ̃ also fails to be surjective. Choose ỹ ∈ 𝔽<sub>ρ</sub> such that φ̃(z) = ỹ has no solution in 𝔽<sub>ρ</sub>.

| Notations and set up | Motivation<br>000 | Proof for cubic functions | Other fields? |
|----------------------|-------------------|---------------------------|---------------|
|                      |                   |                           |               |
|                      |                   |                           |               |
|                      |                   |                           |               |
|                      |                   |                           |               |
|                      |                   |                           |               |

### Proof for p > 3.

- The resultant of φ(z) = -z<sup>z+2</sup>/<sub>2z+3</sub> is 3 ⇒ reduced modulo p to yield a quadratic function φ̃ ∈ F<sub>p</sub>(z).
- Note that  $\tilde{\phi}(0) = \tilde{\phi}(-2)$ , so that  $\tilde{\phi}$  is not injective on  $\mathbb{P}^1(\mathbb{F}_p)$ .
- Since this is a finite set, φ̃ also fails to be surjective. Choose ỹ ∈ 𝔽<sub>p</sub> such that φ̃(z) = ỹ has no solution in 𝔽<sub>p</sub>.
- By Hensel's lemma, it follows that φ(z) = y has no solution in Z<sub>p</sub> for any y ∈ Z<sub>p</sub> such that y ≡ ỹ (mod p).

| Notations and set up | Motivation<br>000 | Proof for cubic functions | Other fields? |
|----------------------|-------------------|---------------------------|---------------|
|                      |                   |                           |               |

#### Proof continued.

- It remains to show that  $\phi(z) = y$  has no solution in  $\mathbb{Q}_{p} \smallsetminus \mathbb{Z}_{p}$ .
- If  $\phi(x) = y$  with  $|x|_p > 1$ , then

$$|\phi(x)|_{\rho} = |x|_{\rho} \cdot \left| \frac{1+2/x}{2+3/x} \right|_{\rho} = |x|_{\rho} > 1,$$

which contradicts  $y \in \mathbb{Z}_p$ . Hence  $\phi(z) = y$  has no solution in  $\mathbb{P}^1(\mathbb{Q}_p)$ , and we have proved that  $\mathbb{Q}_p$  is not  $\phi$ -perfect.



 A general rational function of degree d has 2d + 1 free parameters (coefficients) and 2d - 2 critical points.



- A general rational function of degree d has 2d + 1 free parameters (coefficients) and 2d - 2 critical points.
- Imposing the condition that 0, 1, ∞ are fixed and critical reduces to 2*d* − 5 free parameters.



- A general rational function of degree d has 2d + 1 free parameters (coefficients) and 2d - 2 critical points.
- Imposing the condition that 0, 1, ∞ are fixed and critical reduces to 2d - 5 free parameters.
- Fix a set of critical points. The Wronskian gives
   2d 5 free coefficients for the function satisfying
   2d 5 quadratic equations in 2d 5 variables over K.



- A general rational function of degree d has 2d + 1 free parameters (coefficients) and 2d - 2 critical points.
- Imposing the condition that  $0, 1, \infty$  are fixed and critical reduces to 2d 5 free parameters.
- Fix a set of critical points. The Wronskian gives
   2d 5 free coefficients for the function satisfying
   2d 5 quadratic equations in 2d 5 variables over K.
- d = 3: 2d 5 = 1. Express the remaining critical point as a function of the free parameter.



- A general rational function of degree d has 2d + 1 free parameters (coefficients) and 2d - 2 critical points.
- Imposing the condition that 0, 1, ∞ are fixed and critical reduces to 2d - 5 free parameters.
- Fix a set of critical points. The Wronskian gives
   2d 5 free coefficients for the function satisfying
   2d 5 quadratic equations in 2d 5 variables over K.
- d = 3: 2d 5 = 1. Express the remaining critical point as a function of the free parameter.
- Is it possible to solve for the critical points as explicit functions of parameters for d > 3?

# Further Thoughts continued

 Bézout's Theorem gives an upper bound of 2<sup>2d-5</sup> solutions for a general system of 2d – 5 conics, while Goldberg bounds the number of distinct solutions by the smaller quantity

$$rac{1}{d} inom{2d-2}{d-1} pprox rac{8}{\sqrt{\pi} d^{3/2}} 2^{2d-5}.$$

# Further Thoughts continued

 Bézout's Theorem gives an upper bound of 2<sup>2d-5</sup> solutions for a general system of 2d – 5 conics, while Goldberg bounds the number of distinct solutions by the smaller quantity

$$rac{1}{d} inom{2d-2}{d-1} pprox rac{8}{\sqrt{\pi} d^{3/2}} 2^{2d-5}.$$

 This suggests a substantial amount of extra structure in our system of equations, which may make progress possible. Motivation

# Quartic

#### Example

$$f(z) = \frac{(z^4 + az^3 + bz^2)}{cz^2 + dz + 1 + a + b - c - a}$$
  
where  $d = \frac{(3a^2 + 5ab + 2b^2 - 2ac - 2bc + 7a + 6b - 2c + 4)}{a + b + 1}$ .  
The critical points are:

$$t_1 = -(ac + 9a + 6b - 4c + 12)/(2c)$$
  
 $t_2 = (6a^2 + 4ab - 3ac + 9a + 2b)/(2c)$   
 $t_3 = -b(2a + b - c + 3)/c$ 

| Notations | and | set | up |
|-----------|-----|-----|----|
|           |     |     |    |

Motivation

Proof for cubic functions

Other fields?

# THANK YOU!