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K = field with characteristic 0
K = algebraic closure of K
f ,g ∈ K (z) are equivalent if there exists a linear
fractional transformation σ ∈ K such that f = σ ◦ g.
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A Case of the B. and M. Shapiro Conjecture

Theorem (Eremenko-Gabrielov)
If f ∈ C(z) is a rational function with only real critical
points, then f is equivalent to a rational function with real
coefficients.
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Goldberg: There are at most

ρ(d) :=
1
d

(
2d − 2
d − 1

)
equivalence classes of degree d rational functions
with a given set of critical points.

Eremenko and Gabrielov: Using topological,
combinatorial, and complex analytic techniques
construct exactly ρ(d) real rational functions with a
given set of real critical points.
But! The relationship between a rational function and
its critical points is purely algebraic, via the roots of
the derivative.
This leads to the following question:
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Question:
Is there a truly elementary proof of the Eremenko and
Gabrielov’s result?



Notations and set up Motivation Proof for cubic functions Other fields?

Corollary (Faber, T.)
Using only algebraic techniques we can show, if f ∈ C(z)
is a degree 3 rational function with only real critical points,
then f is equivalent to a rational function with real
coefficients.

Note:
The quadratic case is trivial over any field.
If f ∈ K (z) has critical points c1, c2 ∈ P1(K ), c1 6=∞,
then either f =

(
z−c1
z−c2

)2
or f = (z − c1)2.
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Riemann Hurwitz⇒ f has at most 2d − 2 = 4 critical
points.

f can not be unicritical (Faber).
f has 2 or 3 distinct critical points⇒ at least one
critical point is totally ramified.
f has 4 distinct critical points.
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Normal form for cubic

We begin with a normal form for cubic functions. For
u ∈ K r {−1,−2}, define

fu(z) =
z2(z + u)

(2u + 3)z − (u + 2)
. (1)

This function has the property that it fixes 0,1, and∞,
and each of these three points is critical.

Lemma
A cubic rational function that is critical at 0, 1, and∞ is
equivalent to a unique fu, and the fourth critical point is
φ(u) = −u u+2

2u+3 .
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Proposition

If fu ∈ K (z) is equivalent to a rational function with
K -coefficients, then u ∈ K .
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Algebraic Condition

Definition
For a field K and rational function φ ∈ K (z), we say K is
φ-perfect if the map φ : P1(K )→ P1(K ) is surjective.
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Theorem (Faber, T.)

Let K be a field of characteristic zero with algebraic
closure K . The following statements are equivalent:

1. Any cubic rational function f ∈ K (z) with K -rational
critical points is equivalent to a rational function in
K (z).

2. K is φ-perfect, where φ(z) = −z z+2
2z+3 .
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φ(z) = −z z+2
2z+3

(1)⇒ (2).
Take y ∈ K . Solve the equation φ(u) = y with u ∈ K .
If y =∞, then we may take u = −3/2

Otherwise, choose u ∈ K̄ such that φ(u) = y .
Then the function fu has K -rational critical points
{0,1,∞, y}.
Since fu is equivalent to a rational function with
K -coefficients, the proposition implies that u ∈ K .
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(2)⇒ (1).

Suppose that f has at least three critical points.
WLOG, assume that 0,1, and∞ are among them.
By the lemma, f is equivalent to fu for some u ∈ K̄ .
The remaining critical point is φ(u). By assumption,
both solutions of φ(z) = φ(u) lie in P1(K ), so that
u ∈ K . That is, f is equivalent to a rational function
with K -coefficients.
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φ(z) = −z z+2
2z+3

Corollary (Faber, T.)
Using only algebraic techniques, we can show if f ∈ C(z)
is a cubic rational function with only real critical points,
then f is equivalent to a real rational function.

Proof.
R is φ-perfect for φ as in the theorem.

φ(−3/2) =∞, and if y ∈ R, then the equation
φ(z) = y is equivalent to a quadratic equation with
discriminant 4(y2 − y + 1) = (2y − 1)2 + 3 > 0.
Hence φ(z) = y has a real solution.
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Question:
Are there other fields K for which our corollary will hold?

That is can we show there are other fields K which are
φ-perfect, where φ(z) = −z z+2

2z+3?
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Number fields are not φ-perfect for any φ with
deg(φ) ≥ 2. We can show this using a canonical
height argument.
If φ(z) = −z z+2

2z+3 , the field Qp is φ-perfect iff p = 3.
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Proof for p > 3.

The resultant of φ(z) = −z z+2
2z+3 is 3⇒ reduced

modulo p to yield a quadratic function φ̃ ∈ Fp(z).

Note that φ̃(0) = φ̃(−2), so that φ̃ is not injective on
P1(Fp).

Since this is a finite set, φ̃ also fails to be surjective.
Choose ỹ ∈ Fp such that φ̃(z) = ỹ has no solution in
Fp.
By Hensel’s lemma, it follows that φ(z) = y has no
solution in Zp for any y ∈ Zp such that y ≡ ỹ (mod p).
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Proof continued.
It remains to show that φ(z) = y has no solution in
Qp r Zp.
If φ(x) = y with |x |p > 1, then

|φ(x)|p = |x |p ·
∣∣∣∣1 + 2/x
2 + 3/x

∣∣∣∣
p

= |x |p > 1,

which contradicts y ∈ Zp. Hence φ(z) = y has no
solution in P1(Qp), and we have proved that Qp is not
φ-perfect.
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Further Thoughts

A general rational function of degree d has 2d + 1
free parameters (coefficients) and 2d − 2 critical
points.

Imposing the condition that 0,1,∞ are fixed and
critical reduces to 2d − 5 free parameters.
Fix a set of critical points. The Wronskian gives
2d − 5 free coefficients for the function satisfying
2d − 5 quadratic equations in 2d − 5 variables over K .
d = 3: 2d − 5 = 1. Express the remaining critical
point as a function of the free parameter.
Is it possible to solve for the critical points as explicit
functions of parameters for d > 3?
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Further Thoughts continued

Bézout’s Theorem gives an upper bound of 22d−5

solutions for a general system of 2d − 5 conics, while
Goldberg bounds the number of distinct solutions by
the smaller quantity

1
d

(
2d − 2
d − 1

)
≈ 8√

πd3/2 22d−5.

This suggests a substantial amount of extra structure
in our system of equations, which may make progress
possible.
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Quartic

Example

f (z) =
(z4 + az3 + bz2)

cz2 + dz + 1 + a + b − c − d

where d = (3a2+5ab+2b2−2ac−2bc+7a+6b−2c+4)
a+b+1 .

The critical points are:

t1 = −(ac + 9a + 6b − 4c + 12)/(2c)

t2 = (6a2 + 4ab − 3ac + 9a + 2b)/(2c)

t3 = −b(2a + b − c + 3)/c
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THANK YOU!
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