
Chapter 47

The Topsy-Turvy World
of Continued Fractions
[online]

The other night, from cares exempt, I slept—and what d’you think I dreamt?
I dreamt that somehow I had come, To dwell in Topsy-Turveydom!—

Where babies, much to their surprise, Are born astonishingly wise;
With every Science on their lips, And Art at all their fingertips.

For, as their nurses dandle them, They crow binomial theorem,
With views (it seems absurd to us), On differential calculus.

But though a babe, as I have said, Is born with learning in his head,
He must forget it, if he can, Before he calls himself a man.

W.S. Gilbert, My Dream, 1870 (one of the Bab Ballads).

The famous number π has a never-ending, never-repeating decimal expansion

π = 3.1415926535897932384626433 . . . .

If we are willing to sacrifice accuracy for brevity, we might say that

π = 3 + “a little bit more.”

The “little bit more” is a number between 0 and 1. We take Gilbert’s advice and
turn that “little bit more” topsy-turvy. Turning the small number 0.14159 . . . upside
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down, we obtain the reciprocal of a number that is larger than 1. Thus

π = 3 + 0.1415926535897932384626433 . . .

= 3 +
1
1

0.1415926535897932384626433 . . .

= 3 +
1

7.0625133059310457697930051 . . .

= 3 +
1

7 + 0.0625133059310457697930051 . . .

= 3 +
1

7 + “a little bit more”
.

Notice that if we ignore the “little bit more” in this last equation, we find that π
is approximately equal to 3+ 1

7 , that is, to 22
7 . You may have learned in high school

that 22
7 is a fairly good approximation to π.

Let’s repeat the process. We take the “little bit more” in the last equation and
turn it topsy-turvy,

0.0625133059310457697930051 . . . =
1
1

0.0625133059310457697930051 . . .

=
1

15.996594406685719888923060 . . .
.

Now we substitute this into the earlier formula, which gives a double-decker frac-
tion,

π = 3 +
1

7 +
1

15 + 0.996594406685719888923060 . . .

The bottom level of this fraction is 15.99659 . . . , which is very close to 16. If we
replace it with 16, we get a rational number that is quite close to π,

3 +
1

7 +
1

16

=
355

113
= 3.1415929203539823008849557 . . . .

The fraction 355
113 agrees with π to six decimal places.

Continuing on our merry way, we compute

0.996594406685719888923060 . . . =
1

1.0034172310133726034641468 . . .
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to get the triple-decker fraction

π = 3 +
1

7 +
1

15 +
1

1 + 0.0034172310133726034641468 . . .

,

and then

0.0034172310133726034641468 . . . =
1

292.63459101439547237857177 . . .

to add yet another layer to our fraction,

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 + 0.63459101439547237857177 . . .

Now let’s see what happens if we round that last denominator to 293. We get
the rational number

3 +
1

7 +
1

15 +
1

1 +
1

293

=
104348

33215
= 3.1415926539214210447087159 · · · .

So the fraction 104348
33215 agrees with the value of π to nine decimal places.

Just how accurate is nine decimal places? Suppose that we are given that the
distance from Earth to the Sun is approximately 145,000,000 kilometers and that
we want to calculate the length of Earth’s orbit using the formula1

Circumference = 2× π × Radius.

Then the error in the circumference if you use 104348
33215 instead of π will amount

to a little under 100 meters. So, unless you’ve managed to measure the distance
to the Sun to within a fraction of a kilometer, it’s fine to use the approximation
π ≈ 104348

33215 .
These multistory, topsy-turvy fractions have a name. They are called

1All right, all right, you caught me, Earth’s orbit is an ellipse, not a circle. So we’re really
calculating the circumference of an invisible circle whose radius is approximately 145,000,000 kilo-
meters.
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Continued Fractions
We can form the continued fraction for any number by repeatedly flipping and
separating off the whole integer part. The first few steps in the computation of the
continued fraction for the cube root of 2 are given in full in Figure 47.1. In a similar
fashion, we compute the continued fraction of

√
2,

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

2 +
1

. . .

and the continued fraction of e = 2.7182818 . . . (the base of the natural loga-
rithms),

e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 +
1

6 +
1

1 +
1

1 +
1

8 +
1

. . .

Continued fractions are visually striking as they slide down to the right, but
writing them as fractions takes a lot of ink and a lot of space. There must be a
more convenient way to describe a continued fraction. All the numerators are 1’s,
so all we need to do is list the denominators. We write

[a0, a1, a2, a3, a4, . . .]
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3
√
2 = 1.259921 . . .

= 1 +
1

3.847322 . . .

= 1 +
1

3 +
1

1.180189 . . .

= 1 +
1

3 +
1

1 +
1

5.549736 . . .

= 1 +
1

3 +
1

1 +
1

5 +
1

1.819053 . . .

= 1 +
1

3 +
1

1 +
1

5 +
1

1 +
1

1.220922 . . .

= 1 +
1

3 +
1

1 +
1

5 +
1

1 +
1

1 +
1

4.526491 . . .

Figure 47.1: The Continued Fraction Expansion of 3
√
2
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as shorthand for the continued fraction

a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

a5 +
1

a6 +
1

. . .

.

Using this new notation, our earlier continued fractions expansions (extended a bit
further) can be written succinctly as

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, . . .],
3
√
2 = [1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, . . .],

√
2 = [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . .],

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, . . .].

Now that we’ve looked at several examples of continued fractions, it’s time
to work out some of the general theory. If a number α has a continued fraction
expansion

α = [a0, a1, a2, a3, . . .],

then we have seen that cutting off after a few terms gives a rational number that is
quite close to α. The nth convergent to α is the rational number

pn
qn

= [a0, a1, . . . , an] = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

obtained by using the terms up to an. For example, the first few convergents to
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√
2 = [1, 2, 2, 2, 2, . . .] are

p0
q0

= 1,

p1
q1

= 1 +
1

2
=

3

2
,

p2
q2

= 1 +
1

2 +
1

2

= 1 +
2

5
=

7

5
,

p3
q3

= 1 +
1

2 +
1

2 +
1

2

= 1 +
1

2 +
2

5

= 1 +
5

12
=

17

12
.

A longer list of convergents to
√
2 is given in Table 47.1.

n 0 1 2 3 4 5 6 7 8 9 10
pn
qn

1

1

3

2

7

5

17

12

41

29

99

70

239

169

577

408

1393

985

3363

2378

8119

5741

Table 47.1: Convergents to
√
2

Staring at the list of convergents to
√
2 is not particularly enlightening, but it

would certainly be useful to figure out how successive convergents are generated
from the earlier ones. It is easier to spot the pattern if we look at [a0, a1, a2, a3, . . .]
using symbols, rather than looking at any particular example.

p0
q0

=
a0
1
,

p1
q1

=
a1a0 + 1

a1
,

p2
q2

=
a2a1a0 + a2 + a0

a2a1 + 1
,

p3
q3

=
a3a2a1a0 + a3a2 + a3a0 + a1a0 + 1

a3a2a1 + a3 + a1
.

Let’s concentrate for the moment on the numerators p0, p1, p2, . . . . Table 47.2
gives the values of p0, p1, p2, p3, p4, p5.

At first glance, the formulas in Table 47.2 look horrible, but you might notice
that p0 appears at the tail end of p2, that p1 appears at the tail end of p3, that p2
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n pn

p0 a0
p1 a1a0 + 1

p2 a2a1a0 + a2 + a0
p3 a3a2a1a0 + a3a2 + a3a0 + a1a0 + 1

p4 a4a3a2a1a0 + a4a3a2 + a4a3a0 + a4a1a0 + a2a1a0 + a4 + a2 + a0
p5 a5a4a3a2a1a0 + a5a4a3a2 + a5a4a3a0 + a5a4a1a0 + a5a2a1a0

+a3a2a1a0 + a5a4 + a5a2 + a3a2 + a5a0 + a3a0 + a1a0 + 1

Table 47.2: Numerator of the Continued Fraction [a0, a1, . . . , an]

appears at the tail end of p4, and that p3 appears in the tail end of p5. In other
words, it seems that pn is equal to pn−2 plus some other stuff. Here’s a list of the
“other stuff” for the first few values of n:

p2 − p0 = a2a1a0 + a2

= a2(a1a0 + 1)

p3 − p1 = a3a2a1a0 + a3a2 + a3a0

= a3(a2a1a0 + a2 + a0)

p4 − p2 = a4a3a2a1a0 + a4a3a2 + a4a3a0 + a4a1a0 + a4

= a4(a3a2a1a0 + a3a2 + a3a0 + a1a0 + 1).

Looking back at Table 47.2, it seems that the “other stuff” for pn − pn−2 is sim-
ply an multiplied by the quantity pn−1. We can describe this observation by the
formula

pn = anpn−1 + pn−2.

This is an example of a recursion formula, because it gives the successive values
of p0, p1, p2, . . . recursively in terms of the previous values. It is very similar to the
recursion formula for the Fibonacci numbers that we investigated in Chapter 39.2

Of course, this recursion formula needs two initial values to get started,

p0 = a0 and p1 = a1a0 + 1.

A similar investigation of the denominators q0, q1, q2, . . . reveals an analogous
recursion. In fact, if you make a table for q0, q1, q2, . . . similar to Table 47.2, you

2Indeed, if all the an’s are equal to 1, then the sequence of pn’s is precisely the Fibonacci se-
quence. You can study the connection between continued fractions and Fibonacci numbers by doing
Exercise 47.8.
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will find that q0, q1, q2, . . . seem to obey exactly the same recursion formula as the
one obeyed by p0, p1, p2, . . . , but q0, q1, q2, . . . use different starting values for q0
and q1. We summarize our investigations in the following important theorem.

Theorem 47.1 (Continued Fraction Recursion Formula). Let

pn
qn

= [a0, a1, . . . , an] = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

,

where we treat a0, a1, a2, . . . as variables, rather than as specific numbers. Then
the numerators p0, p1, p2, . . . are given by the recursion formula

p0 = a0, p1 = a1a0 + 1, and pn = anpn−1 + pn−2 for n ≥ 2,

and the denominators q0, q1, q2, . . . are given by the recursion formula

q0 = 1, q1 = a1, and qn = anqn−1 + qn−2 for n ≥ 2,

Proof. When a sequence is defined by a recursive formula, it is often easiest to use
induction to prove facts about the sequence. To get our induction started, we need
to check that

p0
q0

= [a0] and
p1
q1

= [a0, a1].

We are given that p0 = a0 and q0 = 1, so p0/q0 = a0, which verifies the first
equation. Similarly, we are given that p1 = a1a0 + 1 and q1 = a1, so

[a0, a1] = a0 +
1

a1
=

a1a0 + 1

a1
=

p1
q1

,

which verifies the second equation.
Now we assume that the theorem is true when n = N and use that assumption

to prove that it is also true when n = N+1. A key observation is that the continued
fraction

[a0, a1, a2, . . . , aN , aN+1]

can be written as a continued fraction with one less term by combining the last two
terms,3

[a0, a1, a2, . . . , aN , aN+1] =

[
a0, a1, a2, . . . , aN +

1

aN+1

]
.

3Don’t let the complicated last term confuse you. If you think about writing everything out as a
fraction, you’ll see immediately that both sides are equal. Try it for N = 2 and for N = 3 if it’s still
not clear.
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To simplify the notation, let’s use different letters for the terms in the continued
fraction on the right, say

[b0, b1, . . . , bN ]

with b0 = a0, b1 = a1, . . . , bN−1 = aN−1, and bN = aN +
1

aN+1
.

Notice that [b0, b1, . . . , bN ] is a continued fraction with one fewer term than
the continued fraction [a0, a1, . . . , aN+1], so our induction hypothesis says that
the theorem is true for [b0, b1, . . . , bN ]. To avoid confusion, we use capital letters
Pn/Qn for the convergents of [b0, b1, . . . , bN ]. Then the induction hypothesis tells
us that the Pn’s and the Qn’s satisfy the recursion formulas

Pn = bnPn−1+Pn−2 and Qn = bnQn−1+Qn−2 for all 2 ≤ n ≤ N .

Therefore
[b0, b1, . . . , bN ] =

PN

QN
=

bNPN−1 + PN−2

bNQN−1 +QN−2
. (∗)

How are the convergents for [a0, a1, . . . , aN+1] and [b0, b1, . . . , bN ] related?
We know that bn = an for all 0 ≤ n ≤ N − 1, so the nth convergents are the same
for all 0 ≤ n ≤ N − 1. This means that we can make the following substitutions
into the formula (∗):

PN−1 = pN−1, PN−2 = pN−2, QN−1 = qN−1, QN−2 = qN−2.

Since we also know that

[b0, b1, . . . , bN ] = [a0, a1, . . . , aN+1] and bN = aN +
1

aN+1
,

we find that

[a0, a1, . . . , aN+1] =
bNPN−1 + PN−2

bNQN−1 +QN−2

=

(
aN +

1

aN+1

)
pN−1 + pN−2(

aN +
1

aN+1

)
qN−1 + qN−2

=
aN+1(aNpN−1 + pN−2) + pN−1

aN+1(aNqN−1 + qN−2) + qN−1
. (∗∗)
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The induction hypothesis applied to the continued fraction [a0, a1, . . . , aN ] tells us
that its convergents satisfy

pN = aNpN−1 + pN−2 and qN = aNqN−1 + qN−2,

which allows us to simplify the formula (∗∗) to read

[a0, a1, . . . , aN+1] =
aN+1pN + pN−1

aN+1qN + qN−1
.

But by definition, the (N + 1)st convergent is

[a0, a1, . . . , aN+1] =
pN+1

qN+1
.

Comparing these two expressions for [a0, a1, . . . , aN+1], we see that

pN+1 = aN+1pN + pN−1 and qN+1 = aN+1qN + qN−1.

(We are using the fact that both fractions are already written in lowest terms.) We
have now shown that if the recursion relations are true for n = N they are also true
for n = N + 1. This completes our induction proof that they are true for all values
of n.

We expect that the convergents to a number such as
√
2 should get closer and

closer to
√
2, so it might be interesting to see how close the convergents are to one

another:

p0
q0

− p1
q1

=
1

1
− 3

2
= −1

2
p1
q1

− p2
q2

=
3

2
− 7

5
=

1

10
p2
q2

− p3
q3

=
7

5
− 17

12
= − 1

60
p3
q3

− p4
q4

=
17

12
− 41

29
=

1

348
p4
q4

− p5
q5

=
41

29
− 99

70
= − 1

2030
p5
q5

− p6
q6

=
99

70
− 239

169
=

1

11830

The Difference Between Successive Convergents of
√
2

The difference between successive convergents does indeed seem to be getting
smaller and smaller, but an even more interesting pattern has emerged. It seems



[Chap. 47] The Topsy-Turvy World of Continued Fractions [online] 421

that all the numerators are equal to 1 and that the values alternate between positive
and negative.

Let’s try another example, say the continued fraction expansion of π. We find
that

p0
q0

− p1
q1

=
3

1
− 22

7
= −1

7
p1
q1

− p2
q2

=
22

7
− 333

106
=

1

742
p2
q2

− p3
q3

=
333

106
− 355

113
= − 1

11978
p3
q3

− p4
q4

=
355

113
− 103993

33102
=

1

3740526
p4
q4

− p5
q5

=
103993

33102
− 104348

33215
= − 1

1099482930
p5
q5

− p6
q6

=
104348

33215
− 208341

66317
=

1

2202719155

The Difference Between Successive Convergents of π

The exact same pattern has appeared. So let’s buckle down and prove a theorem.

Theorem 47.2 (Difference of Successive Convergents Theorem). As usual, let
p0
q0

,
p1
q1

,
p2
q2

, . . . be the convergents to the continued fraction [a0, a1, a2, . . .]. Then

pn−1qn − pnqn−1 = (−1)n for all n = 1, 2, 3, . . . .

Equivalently, dividing both sides by qn−1qn,

pn−1

qn−1
− pn

qn
=

(−1)n

qn−1qn
for all n = 1, 2, 3, . . . .

Proof. This theorem is quite easy to prove using induction and the Continued Frac-
tion Recursion Formula (Theorem 47.1). First we check that it is true for n = 1:

p0q1 − p1q0 = a0 · a1 − (a1a0 + 1) · 1 = −1.

This gets our induction started.
Now we assume that the theorem is true for n = N , and we need to prove that
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it is true for n = N + 1. We compute

pNqN+1 − pN+1qN = pN (aN+1qN + qN−1)− (aN+1pN + pN−1) qN

using the Continued Fraction Recursion Theorem,

= pNqN−1 − pN−1qN since the aN+1pNqN terms cancel,

= − (pN−1qN − pNqN−1)

= −(−1)N from the induction hypothesis with n = N ,

= (−1)N+1.

We have now shown that the desired formula is true for n = 1 and that if it is true
for n = N , then it is also true for n = N + 1. Therefore, by induction it is true for
all values of n ≥ 1, which completes the proof of the theorem.

Exercises
47.1. (a) Compute the first ten terms in the continued fractions of

√
3 and

√
5.

(b) Do the terms in the continued fraction of
√
3 appear to follow a repetitive pattern? If

so, prove that they really do repeat.
(c) Do the terms in the continued fraction of

√
5 appear to follow a repetitive pattern? If

so, prove that they really do repeat.

47.2. The continued fraction of π2 is

[ , , , 1, 2, 47, 1, 8, 1, 1, 2, 2, 1, 1, 8, 3, 1, 10, 5, 1, 3, 1, 2, 1, 1, 3, 15, 1, 1, 2, . . .].

(a) Fill in the three initial missing entries.
(b) Do you see any sort of pattern in the continued fraction of π2?
(c) Use the first fiveterms in the continued fraction to find a rational number that is close

to π2. How close do you come?
(d) Same question as (c), but use the first six terms.

47.3. The continued fraction of
√
2 +

√
3 is

[ , , , 5, 7, 1, 1, 4, 1, 38, 43, 1, 3, 2, 1, 1, 1, 1, 2, 4, 1, 4, 5, 1, 5, 1, 7, . . .].

(a) Fill in the three initial missing entries.
(b) Do you see any sort of pattern in the continued fraction of

√
2 +

√
3?

(c) For each n = 1, 2, 3, . . . , 7, compute the nth convergent

pn
qn

= [a0, a1, . . . , an]

to
√
2 +

√
3.
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(d) The fractions that you computed in (b) should give more and more accurate approxi-
mations to

√
2 +

√
3. Verify this by making a table of values∣∣∣∣√2 +

√
3− pn

qn

∣∣∣∣ = 1

10some power

for n = 1, 2, 3, . . . , 7.

47.4. Let pn/qn be the nth convergent to α. For each of the following values of α, make a
table listing the value of the quantity

qn |pn − qnα| for n = 1, 2, 3, . . . , N .

(The continued fraction expansions of
√
2, 3

√
2, and π are listed on page 415, so you can

use that information to compute the associated convergents.)
(a) α =

√
2 up to N = 8.

(b) α = 3
√
2 up to N = 7.

(c) α = π up to N = 5.
(d) Your data from (a) suggest that not only is |pn − qn

√
2| bounded, but it actually

approaches a limit as n → ∞. Try to guess what that limit equals, and then prove
that your guess is correct.

(e) Recall that Dirichlet’s Diophantine Approximation Theorem (Theorem 33.2) says
that for any irrational number α, there are infinitely many pairs of positive integers x
and y satisfying

|x− yα| < 1/y. (47.1)

Your data from (a), (b), and (c) suggest that if pn/qn is a convergent to α then (pn, qn)
provides a solution to the inequality (47.1). Prove that this is true.

47.5. Suppose that we use the recursion for pn backwards in order to define pn for negative
values of n. What are the values of p−1 and p−2? Same question for q−1 and q−2.

47.6. The Continued Fraction Recursion Formula (Theorem 47.1) gives a procedure for
generating two lists of numbers p0, p1, p2, p3, . . . and q0, q1, q2, q3, . . . from two initial
values a0 and a1. The fraction pn/qn is then the nth convergent to some number α. Prove
that the fraction pn/qn is already in lowest terms; that is, prove that gcd(pn, qn) = 1.
[Hint. Use the Difference of Successive Convergents Theorem (Theorem 47.2).]

47.7. We proved that successive convergents pn−1/qn−1 and pn/qn satisfy

pn−1qn − pnqn−1 = (−1)n.

In this exercise you will figure out what happens if instead we take every other conver-
gent.
(a) Compute the quantity

pn−2qn − pnqn−2 (∗)

for the convergents of the partial fraction
√
2 = [1, 2, 2, 2, 2, . . .]. Do this for n =

2, 3, . . . , 6.
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(b) Compute the quantity (∗) for n = 2, 3, . . . , 6 for the convergents of the partial fraction

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, . . .].

(c) Using your results from (a) and (b) (and any other data that you want to collect),
make a conjecture for the value of the quantity (∗) for a general continued frac-
tion [a0, a1, a2, . . .].

(d) Prove that your conjecture in (c) is correct. [Hint. The Continued Fraction Recursion
Formula may be useful.]

47.8. The “simplest” continued fraction is the continued fraction [1, 1, 1, . . .] consisting
entirely of 1’s.
(a) Compute the first 10 convergents of [1, 1, 1, . . .].
(b) Do you recognize the numbers appearing in the numerators and denominators of the

fractions that you computed in (a)? (If not, look back at Chapter 39.)
(c) What is the exact value of the limit

lim
n→∞

pn
qn

of the convergents for the continued fraction [1, 1, 1, . . .]?

47.9. In Table 47.2 we listed the numerator pn of the continued fraction [a0, a1, . . . , an]
for the first few values of n.
(a) How are the numerators of [a, b] and [b, a] related to one another?
(b) How are the numerators of [a, b, c] and [c, b, a] related to one another?
(c) More generally, how do the numerators of

[a0, a1, a2, . . . , an−1, an] and [an, an−1, . . . , a2, a1, a0]

seem to be related to one another?
(d) Prove that your conjecture in (c) is correct.

47.10. Write a program that takes as input a decimal number A and an integer n and
returns the following values:
(a) the first n+ 1 terms [a0, a1, . . . , an] of the continued fraction of A;
(b) the nth convergent pn/qn of A, as a fraction;
(c) the difference between A and pn/qn, as a decimal.

47.11. Use your program from Exercise 47.10 to make a table of (at least) the first
10 terms of the continued fraction expansion of

√
D for 2 ≤ D ≤ 30. What sort of

pattern(s) can you find? (You can check your output by comparing with Table 48.1 in the
next chapter.)

47.12. Same question as Exercise 47.11, but with cube roots. In other words, make
a table of (at least) the first 10 terms of the continued fraction expansion of 3

√
D for each

value of D satisfying 2 ≤ D ≤ 20. Do you see any patterns?
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47.13. (Advanced Calculus Exercise) Let a0, a1, a2, a3, . . . be a sequence of real num-
bers satisfying ai ≥ 1. Then, for each n = 0, 1, 2, 3, . . . , we can compute the real number

un = [a0, a1, a2, . . . , an] = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

.

Prove that the limit lim
n→∞

un exists. [Hint. Use Theorems 47.1 and 47.2 to prove that the
sequence u1, u2, u3, . . . is a Cauchy sequence.]



Chapter 48

Continued Fractions, Square
Roots, and Pell’s Equation
[online]

The continued fraction for
√
2,

[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . .],

certainly appears to be quite repetitive. Let’s see if we can prove that the contin-
ued fraction of

√
2 really does consist of the number 1 followed entirely by 2’s.

Since
√
2 = 1.414 . . . , the first step in the continued fraction algorithm is to write

√
2 = 1 + (

√
2− 1) = 1 +

1

1/(
√
2− 1)

.

Next we simplify the denominator,

1√
2− 1

=
1√
2− 1

·
√
2 + 1√
2 + 1

=

√
2 + 1

√
2
2 − 1

=
√
2 + 1.

Substituting this back in above yields

√
2 = 1 +

1√
2 + 1

.

The number
√
2 + 1 is between 2 and 3, so we write it as

√
2 + 1 = 2 + (

√
2− 1) = 2 +

1

1/(
√
2− 1)

.
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But we already checked that 1/(
√
2− 1) is equal to

√
2 + 1, so we find that

√
2 + 1 = 2 +

1√
2 + 1

. (∗)

and hence that
√
2 = 1 +

1√
2 + 1

= 1 +
1

2 +
1

√
2 + 1

.

Now we can use the formula (∗) again to obtain

√
2 = 1 +

1

2 +
1

2 +
1

√
2 + 1

,

and yet again to obtain

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

√
2 + 1

.

Continuing to employ the formula (∗), we find that the continued fraction of
√
2

does indeed consist of a single 1 followed entirely by 2’s.
Emboldened by our success with

√
2, can we find other numbers whose con-

tinued fractions are similarly repetitive (or, to employ proper mathematical termi-
nology, whose continued fractions are periodic)? If you have done Exercise 47.11,
which asks you to compute the continued fraction of

√
D for D = 2, 3, 4, . . . , 20,

you found some examples. Collecting further data of this sort, Table 48.1 lists the
continued fractions for

√
p for each prime p less than 40.

Let’s turn the question on its head and ask what we can deduce about a contin-
ued fraction that happens to be repetitive. We start with a simple example. Suppose
that the number A has as its continued fraction

A = [a, b, b, b, b, b, b, b, . . .].

Table 48.1 includes several numbers of this sort, including
√
2,

√
5, and

√
37. We

can write A in the form

A = a+
1

[b, b, b, b, b, . . .]
,
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D Continued fraction of
√
D Period

2 [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, · · · ] 1
3 [1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, · · · ] 2
5 [2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, · · · ] 1
7 [2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, · · · ] 4
11 [3, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, · · · ] 2
13 [3, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, · · · ] 5
17 [4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, · · · ] 1
19 [4, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, · · · ] 6
23 [4, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, · · · ] 4
29 [5, 2, 1, 1, 2, 10, 2, 1, 1, 2, 10, 2, 1, 1, 2, 10, 2, 1, 1, · · · ] 5
31 [5, 1, 1, 3, 5, 3, 1, 1, 10, 1, 1, 3, 5, 3, 1, 1, 10, 1, 1, · · · ] 8
37 [6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, · · · ] 1

Table 48.1: Continued Fractions of Square Roots

so we really need to determine the value of the continued fraction

B = [b, b, b, b, b, b, b, b, . . .].

Just as we did for A, we can pull off the first entry of B and write B as

B = b+
1

[b, b, b, b, b, . . .]
.

But “lo and behold,” the denominator [b, b, b, b, . . .] is simply B itself, so we find
that

B = b+
1

B
.

Now we can multiply through by B to get B2 = bB+1 and then use the quadratic
formula to solve for B,

B =
b+

√
b2 + 4

2
.

(Note that we use the plus sign, since we need B to be positive.) Finally, we
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compute the value of A,

A = a+
1

B
= a+

2

b+
√
b2 + 4

= a+
2

b+
√
b2 + 4

·

(
b−

√
b2 + 4

b−
√
b2 + 4

)

= a− b−
√
b2 + 4

2

=
2a− b

2
+

√
b2 + 4

2
.

We summarize our calculations, including two very interesting special cases.

Proposition 48.1. For any positive integers a and b, we have the continued fraction
formula

2a− b

2
+

√
b2 + 4

2
= [a, b, b, b, b, b, b, b, . . .].

In particular, taking a = b gives the formula

b+
√
b2 + 4

2
= [b, b, b, b, b, b, b, . . .]

and taking b = 2a gives the formula√
a2 + 1 = [a, 2a, 2a, 2a, 2a, 2a, 2a, 2a, . . .].

What happens if we have a continued fraction that repeats in a more compli-
cated fashion? Let’s do an example to try to gain some insight. Suppose that A has
the continued fraction

A = [1, 2, 3, 4, 5, 4, 5, 4, 5, 4, 5, . . .],

where the subsequent terms continue to alternate 4 and 5. The first thing to do is to
pull off the nonrepetitive part,

A = 1 +
1

2 +
1

3 +
1

[4, 5, 4, 5, 4, 5, 4, 5, . . .]

.

So now we need to figure out the value of the purely periodic continued fraction

B = [4, 5, 4, 5, 4, 5, 4, 5, 4, 5, . . .].
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(A continued fraction is called purely periodic if it repeats from the very begin-
ning.) We can write B as

B = 4 +
1

5 +
1

[4, 5, 4, 5, 4, 5, 4, 5, 4, 5, . . .]

.

As in our earlier example, we recognize that the bottommost denominator is equal
to B, so we have shown that

B = 4 +
1

5 +
1

B

.

Now we simplify this complicated fraction to get an equation for B,

B = 4 +
1

5 +
1

B

= 4 +
1

5B + 1

B

= 4 +
B

5B + 1
=

21B + 4

5B + 1
.

Cross-multiplying by 5B + 1, moving everything to one side, and doing a little bit
of algebra, we find the equation

5B2 − 20B − 4 = 0,

and then the good old quadratic formula yields

B =
20 +

√
400 + 80

10
=

10 + 2
√
30

5
.

Next we find the value of A by substituting the value of B into our earlier formula
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and using elementary algebra to repeatedly flip, combine, and simplify.

A = 1 +
1

2 +
1

3 +
1

B

= 1 +
1

2 +
1

3 +
1

10 + 2
√
30

5

= 1 +
1

2 +
1

3 +
5

10 + 2
√
30

= 1 +
1

2 +
1

35 + 6
√
30

10 + 2
√
30

= 1 +
1

2 +
10 + 2

√
30

35 + 6
√
30

= 1 +
1

80 + 14
√
30

35 + 6
√
30

= 1 +
35 + 6

√
30

80 + 14
√
30

=
115 + 20

√
30

80 + 14
√
30

.

Finally, we rationalize the denominator of A by multiplying the numerator and
denominator by 80− 14

√
30,

A =
115 + 20

√
30

80 + 14
√
30

·

(
80− 14

√
30

80− 14
√
30

)
=

800− 10
√
30

520
=

80−
√
30

52
.

If you have done Exercise 47.10, try running your program with the input

80−
√
30

52
= 1.433130277402852670489 . . .

and check that you indeed get the continued fraction [1, 2, 3, 4, 5, 4, 5, 4, 5, . . .].
A continued fraction is called periodic if it looks like

[a1, a2, . . . , aℓ︸ ︷︷ ︸
initial part

, b1, b2, . . . , bm︸ ︷︷ ︸
periodic part

, b1, b2, . . . , bm︸ ︷︷ ︸
periodic part

, b1, b2, . . . , bm︸ ︷︷ ︸
periodic part

, . . .].

In other words, it is periodic if, after some initial terms, it consists of a finite list
of terms that are repeated over and over again. The number of repeated terms m
is called the period. For example,

√
2 = [1, 2, 2, 2, . . .] has period 1 and

√
23 =
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[4, 1, 3, 1, 8, 1, 3, 1, 8, . . .] has period 4. Other examples are given in Table 48.1.
A convenient notation, which makes the periodicity more visible, is to place a bar
over the repeating part to indicate that it repeats indefinitely. For example

√
2 = [1, 2 ],

√
23 = [4, 1, 3, 1, 8 ],

80−
√
30

52
= [1, 2, 3, 4, 5 ].

Similarly, a general periodic continued fraction is written as

[a1, a2, . . . , aℓ, b1, b2, . . . , bm ].

The examples that we have done suggest that the following theorem might be
true. We prove the first part and leave the second part as a (challenging) exercise.

Theorem 48.2 (Periodic Continued Fraction Theorem).
(a) Suppose that the number A has a periodic continued fraction

A = [a1, a2, . . . , aℓ, b1, b2, . . . , bm ].

Then A is equal to a number of the form

A =
r + s

√
D

t
with r, s, t,D integers and D > 0.

(b) Let r, s, t,D be integers with D > 0. Then the number

r + s
√
D

t

has a periodic continued fraction.

Proof. (a) Let’s start with the purely periodic continued fraction

B = [ b1, b2, . . . , bm ].

If we write out the first m steps, we find that

B = b1 +
1

b2 +
1

. . . +
1

bm +
1

[ b1, b2, . . . , bm ]

= b1 +
1

b2 +
1

. . . +
1

bm +
1

B

.
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We now simplify the right-hand side by repeatedly combining terms and flipping
fractions, where we treat B as a variable and the quantities b1, . . . , bm as numbers.
After much algebra, our equation eventually simplifies to

B =
uB + v

wB + z
, (∗)

where u, v, w, z are certain integers that depend on b1, b2, . . . , bm. Furthermore, it
is clear that u, v, w, z are all positive numbers, since b1, b2, . . . are positive.

To illustrate this procedure, we do the case m = 2.

B = b1 +
1

b2 +
1

B

= b1 +
1

b2B + 1

B

= b1 +
B

b2B + 1
=

(b1b2 + 1)B + b1
b2B + 1

.

Returning to the general case, we cross-multiply equation (∗) and move every-
thing to one side, which gives the equation

wB2 + (z − u)B − v = 0.

Now the quadratic formula yields

B =
−(z − u) +

√
(z − u)2 + 4vw

2w
,

so B has the form

B =
i+ j

√
D

k
with i, j, k,D integers and D > 0.

Returning to our original number A = [a1, a2, . . . , aℓ, b1, b2, . . . , bm ], we can
write A as

A = a1 +
1

a2 +
1

. . . +
1

aℓ +
1

B

= a1 +
1

a2 +
1

. . . +
1

aℓ +
1

i+ j
√
D

k

.

Again we repeatedly flip, combine, and simplify, which eventually yields an ex-
pression for A of the form

A =
e+ f

√
D

g + h
√
D
, where e, f, g, h,D are integers and D > 0.
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Finally, we multiply both numerator and denominator by g − h
√
D. This rational-

izes the denominator and expresses A as a number of the form

A =
r + s

√
D

t
, where r, s, t,D are integers and D > 0.

We have completed the proof of part (a) of the Periodic Continued Fraction The-
orem (Theorem 48.2). The proof of part (b) is left to you as (challenging) Exer-
cise 48.10.

The Continued Fraction of
√
D and Pell’s Equation

The convergents to a continued fraction form a list of rational numbers that get
closer and closer to the original number. For example, the number

√
71 has con-

tinued fraction √
71 = [8, 2, 2, 1, 7, 1, 2, 2, 16 ]

and its first few convergents are

17

2
,

42

5
,

59

7
,

455

54
,

514

61
,

1483

176
,

3480

413
,

57163

6784
,

117806

13981
,

292775

34746
.

If p/q is a convergent to
√
D, then

p

q
≈

√
D, so

p2

q2
≈ D.

Multiplying by q2, this means that we would expect p2 to be fairly close to Dq2.
Table 48.2 lists the values of the differences p2 −Dq2 for the first few convergents
to

√
71.

Among the many striking features of the data in Table 48.2, we pick out the
seemingly mundane appearance of the number 1 in the final column. This occurs
on the seventh row and reflects that fact that

34802 − 71 · 4132 = 1.

Thus the convergent 3480/413 to the number
√
71 provides a solution (3480, 413)

to the Pell equation
x2 − 71y2 = 1.

This suggests a connection between the convergents to
√
D and Pell’s equation

x2 −Dy2 = 1.
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p q p2 − 71q2

17 2 5
42 5 −11
59 7 2

455 54 −11
514 61 5
1483 176 −7
3480 413 1

57163 6784 −7
117806 13981 5
292775 34746 −11

Table 48.2: Convergents p/q to
√
71

In Chapters 32 and 34 we carefully and completely proved that Pell’s equation

x2 −Dy2 = 1

always has a solution. But if you look back at Chapter 34, you will see that our
proof does not provide an efficient way to actually find a solution. It would thus
be very useful if the convergents to

√
D could be used to efficiently compute a

solution to Pell’s equation.
The continued fraction of

√
71,

√
71 = [8, 2, 2, 1, 7, 1, 2, 2, 16 ],

has period 8, and the convergent that gives the solution to Pell’s equation is

[8, 2, 2, 1, 7, 1, 2, 2] =
3480

413
.

A brief examination of Table 48.1 shows that the continued fractions of square
roots

√
D have many special features.1 Here are some further examples with mod-

erately large periods.
√
73 = [8, 1, 1, 5, 5, 1, 1, 16 ], Period = 7.

√
89 = [9, 2, 3, 3, 2, 18 ], Period = 5.

√
97 = [9, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18 ], Period = 11.

1Exercise 48.9 describes various special properties of the continued fraction for
√
D, but before

you look at that exercise, you should try to discover some for yourself.
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For D = 71, the convergent that solved Pell’s equation was the one obtained by
removing the overline and dropping the last entry. Let’s try doing the same for D =
73, D = 89, and D = 97. The results are shown in Table 48.3.

√
D [a, b1, b2, . . . , bm−1] =

p

q
p2 −Dq2

√
71 [8, 2, 2, 1, 7, 1, 2, 2] =

3480

413
34802 − 71 · 4132 = 1

√
73 [8, 1, 1, 5, 5, 1, 1] =

1068

125
10682 − 73 · 1252 = −1

√
79 [8, 1, 7, 1] =

80

9
802 − 79 · 92 = 1

√
97 [9, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1] =

5604

569
56042 − 97 · 5692 = −1

Table 48.3: Convergents to
√
D and Pell’s Equation

This looks very promising. We did not get solutions to Pell’s equation in all
cases, but we found either a solution to Pell’s equation p2 −Dq2 = 1 or a solution
to the similar equation p2 −Dq2 = −1. Furthermore, we obtain a plus sign when
the period of

√
D is even and a minus sign when the period of

√
D is odd. We

summarize our observations in the following wonderful theorem.

Theorem 48.3. Let D be a positive integer that is not a perfect square. Write the
continued fraction of

√
D as

√
D = [a, b1, b2, . . . , bm−1, bm ] and let

p

q
= [a, b1, b2, . . . , bm−1].

Then (p, q) is the smallest solution in positive integers to the equation

p2 −Dq2 = (−1)m.

We do not give the proof of Theorem 48.3, since it is time to wrap up our dis-
cussion of continued fractions and move on to other topics. If you are interested in
reading the proof, you will find it in Chapter 4 of Davenport’s The Higher Arith-
metic and in many other number theory textbooks. Instead, we conclude with one
final observation and one Brobdingnagian2 example.

2“The Learning of this People [the Brobdingnags] is very defective, consisting only in Morality,
History, Poetry, and Mathematicks, wherein they must be allowed to excel.” (Gulliver’s Travels,
Chapter II:7, Jonathan Swift)
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Our observation has to do with the problem of solving x2 −Dy2 = 1 when
Theorem 48.3 happens to give a solution to x2 −Dy2 = −1. In other words, what
can we do when

√
D = [a, b1, b2, . . . , bm−1, bm ] and m is odd? The answer is

provided by our earlier work. Recall that Pell’s Equation Theorem (Theorem 32.1)
says that if (x1, y1) is the smallest solution to x2 −Dy2 = 1 in positive integers,
then every other solution (xk, yk) can be computed from the smallest solution via
the formula

xk + yk
√
D =

(
x1 + y1

√
D
)k

, k = 1, 2, 3, . . . . (∗)

The following computation shows why this formula works:

x2k −Dy2k =
(
xk + yk

√
D
)(

xk − yk
√
D
)

=
(
x1 + y1

√
D
)k (

x1 − y1
√
D
)k

= (x21 −Dy21)
k

= 1 since we have assumed that x21 −Dy21 = 1.

Suppose instead that (x1, y1) is a solution to x2 −Dy2 = −1 and that we com-
pute (xk, yk) using formula (∗). Then we get

x2k −Dy2k = (x21 −Dy21)
k = (−1)k.

So if k is even, then we get a solution to Pell’s equation x2 −Dy2 = 1.
Do you see how this solves our problem? Suppose that m is odd in Theo-

rem 48.3, so (p, q) satisfies p2 −Dq2 = −1. Then we simply compute the square

(p+ q
√
D)2 = (p2 + q2D) + 2pq

√
D

to find the desired solution (p2+q2D, 2pq) to x2 −Dy2 = 1. This finally gives us
an efficient way to solve Pell’s equation in all cases, and in fact one can show that
it provides a method for finding the smallest solution.

Theorem 48.4 (Continued Fractions and Pell’s Equation Theorem). Write the con-
tinued fraction of

√
D as

√
D = [a, b1, b2, . . . , bm−1, bm ] and let

p

q
= [a, b1, b2, . . . , bm−1].

Then the smallest solution in positive integers to Pell’s equation

x2 −Dy2 = 1 is given by (x1, y1) =

{
(p, q) if m is even,
(p2 + q2D, 2pq) if m is odd.
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All other solutions are given by the formula

xk + yk
√
D =

(
x1 + y1

√
D
)k

, k = 1, 2, 3, . . . .

We conclude our exploration of the world of continued fractions by solving the
seemingly innocuous Pell equation

x2 − 313y2 = 1.

The continued fraction of
√
313 is

√
313 = [17, 1, 2, 4, 11, 1, 1, 3, 2, 2, 3, 1, 1, 11, 4, 2, 1, 34 ].

Following the procedure laid out by Theorem 48.4, we discard the last number in
the periodic part, which in this case is the number 34, and compute the fraction

126862368

7170685
= [17, 1, 2, 4, 11, 1, 1, 3, 2, 2, 3, 1, 1, 11, 4, 2, 1].

The period m is equal to 17, so the pair (p, q) = (126862368, 7170685) gives a
solution to

1268623682 − 313 · 71706852 = −1.

To find the smallest solution to Pell’s equation, Theorem 48.4 tells us to compute

p2 + q2D = 1268623682 + 71706852 · 313 = 32188120829134849

2pq = 2 · 126862368 · 7170685 = 1819380158564160

Thus the smallest solution3 to

x2 − 313y2 = 1 is (x, y) = (32188120829134849, 1819380158564160).

And if we desire the next smallest solution, we simply square

32188120829134849 + 1819380158564160
√
313

and read off the answer

(x, y) = (2072150245021969438104715652505601,

117124856755987405647781716823680).

3As noted in Chapter 32, this is the solution found by Brouncker in 1657. Now you know how
someone could find such a large solution back in the days before computers!
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Exercises
48.1. Find the value of each of the following periodic continued fractions. Express your
answer in the form r+s

√
D

t , where r, s, t,D are integers, just as we did in the text when we
computed the value of [1, 2, 3, 4, 5 ] to be 80−

√
30

52 .
(a) [ 1, 2, 3 ] = [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . .]

(b) [1, 1, 2, 3 ] = [1, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, . . .]

(c) [1, 1, 1, 3, 2 ] = [1, 1, 1, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, . . .]

(d) [3, 2, 1 ] = [3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . .]

(e) [1, 3, 5 ] = [1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, . . .]

(f) [1, 2, 1, 3, 4 ] = [1, 2, 1, 3, 4, 1, 3, 4, 1, 3, 4, 1, 3, 4, . . .]

48.2. For each of the following numbers, find their (periodic) continued fraction. What is
the period?

(a)
16−

√
3

11
(b)

1 +
√
293

2
(c)

3 +
√
5

7
(d)

1 + 2
√
5

3

48.3. During the proof of the Periodic Continued Fraction Theorem (Theorem 48.2), we
simplified the continued fraction [b1, b2, B] and found that it equals

(b1b2 + 1)B + b1
b2B + 1

.

(a) Do a similar calculation for [b1, b2, b3, B] and write it as

[b1, b2, b3, B] =
uB + v

wB + z
,

where u, v, w, z are given by formulas that involve b1, b2, and b3.
(b) Repeat (a) for [b1, b2, b3, b4, B].
(c) Look at your answers in (a) and (b). Do the expressions for u, v, w, z look familiar?

[Hint. Compare them to the fractions [b1, b2], [b1, b2, b3], and [b1, b2, b3, b4]. These
are convergents to [b1, b2, b3, . . .]. Also look at Table 47.2.]

(d) More generally, when the continued fraction [b1, b2, . . . , bm, B] is simplified as

[b1, b2, b3, . . . , bm, B] =
umB + vm
wmB + zm

,

explain how the numbers um, vm, wm, zm can be described in terms of the conver-
gents [b1, b2, b3, . . . , bm−1] and [b1, b2, b3, . . . , bm]. Prove that your description is
correct.

48.4. Proposition 48.1 describes the number with continued fraction expansion [a, b ].
(a) Do a similar computation to find the number whose continued fraction expansion is

[a, b, c ].
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(b) If you let b = c in your formula, do you get the same result as described in Proposi-
tion 48.1? [If your answer is “No,” then you made a mistake in (a)!]

(c) For which values of a, b, c does the number in (a) have the form s
√
D
t for inte-

gers s, t,D?
(d) For which values of a, b, c is the number in (a) equal to the square root

√
D of some

integer D?

48.5. Theorem 48.3 tells us that if the continued fraction of
√
D has odd period we can

find a solution to x2 −Dy2 = −1.
(a) Among the numbers 2 ≤ D ≤ 20 with D not a perfect square, which

√
D have odd

period and which have even period? Do you see a pattern?
(b) Same question for

√
p for primes 2 ≤ p ≤ 40. (See Table 48.1.)

(c) Write down infinitely many positive integers D such that
√
D has odd period. For

each of your D values, give a solution to the equation x2 −Dy2 = −1. [Hint. Look
at Proposition 48.1.]

(d) Write down infinitely many positive integers D so that
√
D has even period. [Hint.

Use your solution to Exercise 48.4(d).]

48.6. (a) Write a program that takes as input a positive integer D and returns as output
a list of numbers [a, b1, . . . , bm] so that the continued fraction expansion of

√
D is

[a, b1, . . . , bm ]. Use your program to print a table of continued fractions of
√
D for

all nonsquare D between 2 and 50.
(b) Generalize (a) by writing a program that takes as input integers r, s, t,D with t > 0

and D > 0 and returns as output a list of numbers

[a1, . . . , aℓ, b1, . . . , bm] satisfying
r + s

√
D

t
= [a1, . . . , aℓ, b1, . . . , bm ].

Use your program to print a table of continued fractions of (3 + 2
√
D)/5 for all

nonsquare D between 2 and 50.

48.7. (a) Write a program that takes as input a list [b1, . . . , bm] and returns the value
of the purely periodic continued fraction [ b1, b2, . . . , bm ]. The output should be in
the form (r, s, t,D), where the value of the continued fraction is (r + s

√
D)/t.

(b) Use your program from (a) to compute the values of each of the following continued
fractions:

[ 1 ], [ 1, 2 ], [ 1, 2, 3 ], [ 1, 2, 3, 4 ], [ 1, 2, 3, 4, 5 ], [ 1, 2, 3, 4, 5, 6 ].

(c) Extend your program in (a) to handle periodic continued fractions that are not purely
periodic. In other words, take as input two lists [a1, . . . , aℓ] and [b1, . . . , bm] and
return the value of [a1, . . . , aℓ, b1, b2, . . . , bm ].

(d) Use your program from (c) to compute the values of each of the following continued
fractions:

[6, 5, 4, 3, 2, 1 ], [6, 5, 4, 3, 1, 2 ], [6, 5, 4, 1, 2, 3 ], [6, 5, 1, 2, 3, 4 ], [6, 1, 2, 3, 4, 5 ].
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48.8. Write a program to solve Pell’s equation x2 − Dy2 = 1 using the method of
continued fractions. If it turns out that there is a solution to x2−Dy2 = −1, list a solution
to this equation also.
(a) Use your program to solve Pell’s equation for all nonsquare values of D between 2

and 20. Check your answers against Table 32.1 (page 249).
(b) Use your program to extend the table by solving Pell’s equation for all nonsquare

values of D between 76 and 99.

48.9. (hard problem) Let D be a positive integer that is not a perfect square.
(a) Prove that the continued fraction of

√
D is periodic.

(b) More precisely, prove that the continued fraction of
√
D looks like

√
D = [a, b1, b2, . . . , bm ].

(c) Prove that bm = 2a.
(d) Prove that the list of numbers b1, b2, . . . , bm−1 is symmetric; that is, it’s the same

left to right as it is right to left.

48.10. (hard problem) Let r, s, t,D be integers with D > 0 and t ̸= 0 and let

A =
r + s

√
D

t
.

Prove that the continued fraction of A is periodic. [This is part (b) of the Periodic Contin-
ued Fraction Theorem (Theorem 48.2).]



Chapter 49

Generating Functions [online]

Aptitude tests, intelligence tests, and those ubiquitous grade school math work-
sheets teem with questions such as:1

What is the next number in the sequence
23, 27, 28, 32, 36, 37, 38, 39, 41, 43, 47, 49,
50, 51, 52, 53, 56, 58, 61, 62, 77, 78, ?

Number theory abounds with interesting sequences. We’ve seen lots of them in our
excursions, including for example2

Natural Numbers 0, 1, 2, 3, 4, 5, 6, . . .

Square Numbers 0, 1, 4, 9, 16, 25, 36, . . .

Fibonacci Numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

We have also seen that sequences can be described in various ways, for example
by a formula such as

sn = n2

or by a recursion such as
Fn = Fn−1 + Fn−2.

Both of these methods of describing a sequence are useful, but since a sequence
consists of an infinitely long list of numbers, it would be nice to have a way of
bundling the entire sequence into a single package. We will build these containers
out of power series.

1This problem is for baseball fans. The answer is given at the end of the chapter.
2For this chapter, it is convenient to start these interesting sequences with 0, rather than with 1.
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For example, we can package the sequence 0, 1, 2, 3, . . . of natural numbers
into the power series

0 + 1 · x+ 2x2 + 3x3 + 4x4 + 5x5 + · · · ,

and we can package the sequence 0, 1, 1, 2, 3, 5, 8, . . . of Fibonacci numbers into
the power series

0 + 1 · x+ 1 · x2 + 2x3 + 3x4 + 5x5 + 8x6 + · · · .

In general, any sequence

a0, a1, a2, a3, a4, a5, . . .

can be packaged into a power series

A(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + · · ·

that is called the generating function for the sequence a0, a1, a2, a3, . . . .
What good are generating functions, other than providing a moderately incon-

venient way to list the terms of a sequence? The answer lies in that powerful word
function. A generating function A(x) is a function of the variable x; that is, we can
substitute in a value for x and (if we’re lucky) get back a value for A(x). We say
“if we’re lucky” because, as you know if you have studied calculus, a power series
need not converge for every value of x.

To illustrate these ideas, we start with the seemingly uninteresting sequence

1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

consisting of all ones.3 Its generating function, which we call G(x), is

G(x) = 1 + x+ x2 + x3 + x4 + x5 + · · · .

The ratio test4 from calculus says that this series converges provided that

1 > ρ = lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = |x|.

3If intelligence tests asked for the next term in sequences like this one, we could all have an IQ
of 200!

4Recall that the ratio test says that a series b0 + b1 + b2 + · · · converges if the limiting ratio
ρ = limn→∞ |bn+1/bn| satisfies ρ < 1.
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You’ve undoubtedly already recognized that G(x) is the geometric series and you
probably also remember its value, but in case you’ve forgotten, here is the elegant
method used to evaluate the geometric series.

xG(x) = x(1 + x+ x2 + x3 + x4 + x5 + · · · )
= x+ x2 + x3 + x4 + x5 + x6 + · · ·
= (1 + x+ x2 + x3 + x4 + x5 + x6 + · · · )− 1

= G(x)− 1.

Thus xG(x) = G(x) − 1, and we can solve this equation for G(x) to obtain the
formula

G(x) =
1

1− x
.

This proves the following formula.

Geometric Series Formula
1+ x+ x2 + x3 + x4 + x5 + · · · = 1

1− x
valid for |x| < 1

The sequence 1, 1, 1, 1,. . . is rather dull, so let’s move on to the sequence of
natural numbers 0, 1, 2, 3,. . . whose generating function is

N(x) = x+ 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + · · · .

The ratio test tells us that N(x) converges provided that

1 > ρ = lim
n→∞

∣∣∣∣(n+ 1)xn+1

nxn

∣∣∣∣ = |x|.

We would like to find a simple formula for N(x), similar to the formula we
found for G(x). The way we do this is to start with the Geometric Series Formula

1 + x+ x2 + x3 + x4 + x5 + · · · = 1

1− x

and use a little bit of calculus. If we differentiate both sides of this formula, we get

0 + 1 + 2x+ 3x2 + 4x3 + 5x4 + · · ·︸ ︷︷ ︸
When multiplied by x, this becomes N(x).

=
d

dx

(
1

1− x

)
=

1

(1− x)2
.

Multiplying both sides of this equation by x gives us the formula

N(x) = x+ 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + · · · = x

(1− x)2
.
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If we differentiate again and multiply both sides by x, we get a formula for the
generating function

S(x) = x+ 4x2 + 9x3 + 16x4 + 25x5 + 36x6 + · · ·

for the sequence of squares 0, 1, 4, 9, 16, 25, . . . . Thus

x
dN(x)

dx
= x

d

dx
(x+ 2x2 + 3x3 + 4x4 + · · · ) = x

d

dx

(
x

(1− x)2

)
S(x) = x+ 4x2 + 9x3 + 16x4 + 25x5 + · · · = x+ x2

(1− x)3
.

We now turn to the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . . and its generating
function

F (x) = F1x+ F2x
2 + F3x

3 + F4x
4 + F5x

5 + F6x
6 + · · ·

= x+ x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7 + · · · .

How can we find a simple expression for F (x)? The differentiation trick we used
earlier doesn’t seem to help, so instead we make use of the recursive formula

Fn = Fn−1 + Fn−2.

Thus we can replace F3 with F2 + F1, and we can replace F4 with F3 + F2, and
so on, which means we can write F (x) as

F (x) = F1x+ F2x
2 + F3x

3 + F4x
4 + F5x

5 + · · ·

= F1x+ F2x
2 + (F2 + F1)x

3 + (F3 + F2)x
4 + (F4 + F3)x

5 + · · · .

Ignoring the first two terms for the moment, we regroup the other terms in the
following manner:

Group these terms together
↓ ↓ ↓ ↓

(F2 + F1)x
3 + (F3 + F2)x

4 + (F4 + F3)x
5 + (F5 + F4)x

6 + . . . .
↑ ↑ ↑ ↑

Group these terms together

This gives the formula

F (x) = F1x+ F2x
2 +

{
F1x

3 + F2x
4 + F3x

5 + F4x
6 + · · ·

}
+
{
F2x

3 + F3x
4 + F4x

5 + F5x
6 + · · ·

}
.
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Now observe that the series between the first set of braces is almost equal to
the generating function F (x) with which we started; more precisely, it is equal to
x2F (x). Similarly, the series between the second set of braces is equal to xF (x)
except that it is missing the initial F1x

2 term. In other words,

F (x) = F1x+ F2x
2 + {F1x

3 + F2x
4 + · · · }+ {F2x

3 + F3x
4 + · · · }

= F1x+ F2x
2 + x2{F1x+ F2x

2 + · · ·︸ ︷︷ ︸
equals F (x)

}+ x{F2x
2 + F3x

3 + · · ·︸ ︷︷ ︸
equals F (x)− F1x

}.

If we use the values F1 = 1 and F2 = 1, this gives us the formula

F (x) = x+ x2 + x2F (x) + x
(
F (x)− x

)
= x+ x2F (x) + xF (x).

This gives us an equation that we can solve for F (x) to obtain the following beau-
tiful formula.

Fibonacci Generating Function Formula
x+ x2 + 2x3 + 3x4 + 5x5 + 8x6 + · · · = x

1− x− x2

We can use the formula for the Fibonacci generating function together with the
method of partial fractions that you learned in calculus to rederive Binet’s formula
for the nth Fibonacci number (Theorem 39.1). The first step is to use the quadratic
formula to find the roots of the polynomial 1− x− x2. The roots are −1±

√
5

2 ,
which are the reciprocals of the two numbers5

α =
1 +

√
5

2
and β =

1−
√
5

2
.

This lets us factor the polynomial as

1− x− x2 = (1− αx)(1− βx).

The idea of partial fractions is to take the function
x

1− x− x2
and split it up

into the sum of two pieces

x

1− x− x2
=

A

1− αx
+

B

1− βx
,

5Notice how the Golden Ratio (page 330) has suddenly appeared! This should not be surprising,
since we saw in Chapter 39 that the Fibonacci sequence and the Golden Ratio are intimately related
to one another.
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where we need to find the correct values for A and B. To do this, we clear denom-
inators by multiplying both sides by 1− x− x2 to get

x = A(1− βx) +B(1− αx).

[Remember that 1−x−x2 = (1−αx)(1−βx).] Rearranging this relation yields

x = (A+B)− (Aβ +Bα)x.

We’re looking for values of A and B that make the polynomial x on the left equal
to the polynomial on the right, so we must choose A and B to satisfy

0 = A+B

1 = −Aβ −Bα.

It is easy to solve these two equations for the unknown quantities A and B
(remember that α and β are particular numbers). We find that

A =
1

α− β
and B =

1

β − α
,

and using the values α = (1 +
√
5)/2 and β = (1−

√
5)/2 gives

A =
1√
5

and B = − 1√
5
.

To recapitulate, we have found the partial fraction decomposition

x

1− x− x2
=

1√
5

(
1

1− αx

)
− 1√

5

(
1

1− βx

)
.

This may not seem like progress, but it is, because we have replaced the com-
plicated function x/(1− x− x2) with the sum of two simpler expressions. If this
were a calculus textbook, I would now ask you to compute the indefinite integral∫

x
1−x−x2 dx and you would use the partial fraction formula to compute∫

x

1− x− x2
dx =

1√
5

∫
dx

1− αx
− 1√

5

∫
dx

1− βx

=
−1√
5α

log |1− αx|+ 1√
5β

log |1− βx|+ C.

However, our subject is not calculus, it is number theory, so we instead observe
that the two pieces of the partial fraction decomposition can be expanded using the
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geometric series as
1

1− αx
= 1 + αx+ (αx)2 + (αx)3 + (αx)4 + · · · ,

1

1− βx
= 1 + βx+ (βx)2 + (βx)3 + (βx)4 + · · · .

This lets us write the function x/(1− x− x2) as a power series

x

1− x− x2
=

1√
5

(
1

1− αx

)
− 1√

5

(
1

1− βx

)
=

α− β√
5

x+
α2 − β2

√
5

x2 +
α3 − β3

√
5

x3 + · · · .

But we know that x/(1 − x − x2) is the generating function for the Fibonacci
sequence,

x

1− x− x2
= F1x+ F2x

2 + F3x
3 + F4x

4 + F5x
5 + F6x

6 + · · · ,

so matching the two series for x/(1− x− x2), we find that

F1 =
α− β√

5
, F2 =

α2 − β2

√
5

, F3 =
α3 − β3

√
5

, . . . .

Substituting the values of α and β, we again obtain Binet’s formula (Theorem 39.1)
for the nth Fibonacci number.

Binet’s Formula

Fn =
1√
5

{(
1 +

√
5

2

)n

−

(
1−

√
5

2

)n}
The two numbers appearing in the Binet’s Formula are approximately equal to

α =
1 +

√
5

2
≈ 1.618034 and β =

1−
√
5

2
≈ −0.618034.

Notice that |β| < 1, so if we raise β to a large power, it becomes very small. In
particular,

Fn = Closest integer to
1√
5

(
1 +

√
5

2

)n

≈ (0.447213 . . .)× (1.61803 . . .)n.

For example,

F10 ≈ 55.003636 . . . and F25 ≈ 75024.999997334 . . . ,

which are indeed extremely close to the correct values F10 = 55 and F25 = 75025.
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Exercises
49.1. (a) Find a simple formula for the generating function E(x) for the sequence of even

numbers 0, 2, 4, 6, 8, . . . .
(b) Find a simple formula for the generating function J(x) for the sequence of odd num-

bers 1, 3, 5, 7, 9, . . . .
(c) What does E(x2) + xJ(x2) equal? Why?

49.2. Find a simple formula for the generating function of the sequence of numbers

a, a+m, a+ 2m, a+ 3m, a+ 4m, . . . .

(If 0 ≤ a < m, then this is the sequence of nonnegative numbers that are congruent to a
modulo m.)

49.3. (a) Find a simple formula for the generating function of the sequence whose nth

term is n3, that is, the sequence 0, 1, 8, 27, 64, . . . .
(b) Repeat (a) for the generating function of the sequence 0, 1, 16, 81, 256, . . . . (This is

the sequence whose nth term is n4.)
(c) If you have access to a computer that does symbolic differentiation or if you en-

joy length calculations with paper and pencil, find the generating function for the
sequence whose nth term is n5.

(d) Repeat (c) for the sequence whose nth term is n6.

49.4. Let G(x) = 1 + x + x2 + x3 + · · · be the generating function of the sequence
1, 1, 1, . . . .
(a) Compute the first five coefficients of the power series G(x)2.
(b) Prove that the power series G(x)2 − G(x) is equal to some other power series that

we studied in this chapter.

49.5. Let T (x) = x+3x2+6x3+10x4+ · · · be the generating function for the sequence
0, 1, 3, 6, 10, . . . of triangular numbers. Find a simple expression for T (x).

49.6. This question investigates the generating functions of certain sequences whose terms
are binomial coefficients (see Chapter 38).
(a) Find a simple expression for the generating function of the sequence whose nth term

is
(
n
1

)
.

(b) Same question for the sequence whose nth term is
(
n
2

)
.

(c) Same question for the sequence whose nth term is
(
n
3

)
.

(d) For a fixed number k, make a conjecture giving a simple expression for the generating
function of the sequence whose nth term is

(
n
k

)
.

(e) Prove that your conjecture in (d) is correct.

49.7. Let k ≥ 0 be an integer and let Dk(x) be the generating function of the sequence
0k, 1k, 2k, 3k, 4k,. . . . In this chapter we computed

D0(x) =
1

1− x
, D1(x) =

x

(1− x)2
, D2(x) =

x+ x2

(1− x)3
,
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and in Exercise 49.3 you computed further examples. These computations suggest that
Dk(x) looks like

Dk(x) =
Pk(x)

(1− x)k+1

for some polynomial Pk(x).
(a) Prove that there is a polynomial Pk(x) such that Dk(x) can be written in the form

Pk(x)/(1− x)k+1. [Hint. Use induction on k.]
(b) Make a list of values of Pk(0) for k = 0, 1, 2, . . . and make a conjecture. Prove that

your conjecture is correct.
(c) Same as (b) for the values of Pk(1).
(d) Repeat (b) and (c) for the values of the derivative P ′

k(0) and P ′
k(1).

(e) What other patterns can you find in the Pk(x) polynomials?

49.8. Let ϕ be Euler’s phi function (see Chapter 11), and let p be a prime number. Find a
simple formula for the generating function of the sequence ϕ(1), ϕ(p), ϕ(p2), ϕ(p3), . . . .

49.9. The Lucas sequence is the sequence of numbers Ln given by the rules L1 = 1,
L2 = 3, and Ln = Ln−1 + Ln−2.
(a) Write down the first 10 terms of the Lucas sequence.
(b) Find a simple formula for the generating function of the Lucas sequence.
(c) Use the partial fraction method to find a simple formula for Ln, similar to Binet’s

Formula for the Fibonacci number Fn.

49.10. Write down the first few terms in each of the following recursively defined se-
quences, and then find a simple formula for the generating function.
(a) a1 = 1, a2 = 2, and an = 5an−1 − 6an−2 for n = 3, 4, 5, . . .

(b) b1 = 1, b2 = 3, and bn = 2bn−1 − 2bn−2 for n = 3, 4, 5, . . .

(c) c1 = 1, c2 = 1, c3 = 1, and cn = 4cn−1 + 11cn−2 − 30cn−3 for n = 4, 5, 6, . . .

49.11. Use generating functions and the partial fraction method to find a simple formula
for the nth term of each of the following sequences similar to the formula we found in the
text for the nth term of the Fibonacci sequence. (Note that these are the same sequences as
in the previous exercise.) Be sure to check your answer for the first few values of n.
(a) a1 = 1, a2 = 2, and an = 5an−1 − 6an−2 for n = 3, 4, 5, . . .

(b) b1 = 1, b2 = 3, and bn = 2bn−1 − 2bn−2 for n = 3, 4, 5, . . . [Hint. You may need to
use complex numbers!]

(c) c1 = 1, c2 = 1, c3 = 1, and cn = 4cn−1 + 11cn−2 − 30cn−3 for n = 4, 5, 6, . . .

49.12. (a) Fix an integer k ≥ 0, and let H(x) be the generating function of the sequence
whose nth term is hn = nk. Use the ratio test to find the interval of convergence of
the generating function H(x).

(b) Use the ratio test to find the interval of convergence of the generating function F (x)
of the Fibonacci sequence 0, 1, 1, 2, 3, 5, . . . .
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49.13. Sequences a0, a1, a2, a3, . . . are also sometimes packaged in an exponential gener-
ating function

a0 + a1
x

1!
+ a2

x2

2!
+ a3

x3

3!
+ a4

x4

4!
+ a5

x5

5!
+ · · · .

(a) What is the exponential generating function for the sequence 1, 1, 1, 1, . . . ? [Hint.
Your answer explains why the word exponential is used in the name of this type of
generating function.]

(b) What is the exponential generating function for the sequence 0, 1, 2, 3, . . . of natural
numbers?

49.14. Let f(x) be the exponential generating function of the Fibonacci sequence

f(x) = F0 + F1
x

1!
+ F2

x2

2!
+ F3

x3

3!
+ F4

x4

4!
+ F5

x5

5!
+ · · · .

(a) Find a simple relation satisfied by f(x) and its derivatives f ′(x) and f ′′(x).
(b) Find a simple formula for f(x).

49.15. Fix an integer N and create a sequence of numbers a0, a1, a2, . . . in the following
way:

a0 = 10 + 20 + 30 + ·+N0

a1 = 11 + 21 + 31 + ·+N1

a2 = 12 + 22 + 32 + ·+N2

a3 = 13 + 23 + 33 + ·+N3

...
...

Compute the exponential generating function of this sequence. (We will study these power
sums further in Chapter 50.)

Solution to Sequence on page 442. The next five terms in the sequence

23, 27, 28, 32, 36, 37, 38, 39, 41, 43, 47, 49, 50, 51, 52, 53, 56, 58, 61, 62, 77, 78

given at the beginning of this chapter are 96, 98, 99, 00, and 09, as is obvious to those who
know that the New York Yankees won the World Series in the years 1923, 1927, 1928, . . . ,
1977, 1978, 1996, 1998, 1999, 2000, and 2009. Those who are not Yankee fans might
prefer to complete the shorter sequence 03, 12, 15, 16, 18, . [Hint. There is a gap
of 86 years before the next entry.]
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The nth triangular number

Tn = 1 + 2 + 3 + 4 + · · ·+ n

is the sum of the first n natural numbers. In Chapter 1 we used geometry to find a
simple formula for Tn,

Tn =
n(n+ 1)

2
.

This formula was extremely useful in Chapter 31, where we described all numbers
that are simultaneously triangular and square.

The reason that the formula for Tn is so helpful is that it expresses a sum
of n numbers as a simple polynomial in the variable n. To say this another way,
let F (X) be the polynomial

F (X) =
1

2
X2 +

1

2
X.

Then the sum
1 + 2 + 3 + 4 + · · ·+ n,

which at first glance requires us to add n numbers, can be computed very simply
as the value F (n).

Now suppose that rather than adding the first n integers, we instead add the
first n squares,

Rn = 1 + 4 + 9 + 16 + · · ·+ n2.

We make a short table of the first few values and look for patterns.

n 1 2 3 4 5 6 7 8 9 10

Rn 1 5 14 30 55 91 140 204 285 385
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The numbers R1, R2, R3, . . . are increasing fairly rapidly, but they don’t seem
to obey any simple pattern. It isn’t easy to see how we might get our hands on
these numbers. We use a tool called the method of telescoping sums. To illustrate
this technique, we first look at the following easier problem. Suppose we want to
compute the value of the sum

Sn =
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ · · ·+ 1

(n− 1) · n
.

For this sum, if we compute the first few values, it’s easy to see the pattern:

n 2 3 4 5 6 7 8 9 10

Sn
1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

9
10

So we guess that Sn is probably equal to n−1
n , but how can we prove that this is

true? The key is to observe that the first few terms of the sum can be written as

1

1 · 2
= 1− 1

2
and

1

2 · 3
=

1

2
− 1

3
and

1

3 · 4
=

1

3
− 1

4

and so on. More generally, the ith term of the sum is equal to

1

i · (i+ 1)
=

1

i
− 1

i+ 1
.

Hence the sum Sn is equal to

Sn =
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · · + 1

(n− 1) · n

=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · · +

(
1

n− 1
− 1

n

)
.

Now look what happens when we add the terms on this last line. We start
with 1. Next we get −1

2 followed by +1
2 , so these two terms cancel. Then we get

−1
3 , which is followed by +1

3 , so these two terms also cancel. Notice how the sum
“telescopes” (imagine how the tubes of a telescope fold into one another), with
only the first term and the last term remaining at the end. This proves the formula

Sn = 1− 1

n
=

n− 1

n
.

Now we return to the problem of computing the sum of squares

Rn = 12 + 22 + 32 + · · ·+ n2.
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For reasons that will become apparent in a moment, we look at the following tele-
scoping sum involving cubes:

(n+ 1)3 = 13 + (23 − 13) + (33 − 23) + · · ·+
(
(n+ 1)3 − n3

)
.

Using summation notation, we can write this as

(n+ 1)3 = 1 +

n∑
i=1

(
(i+ 1)3 − i3

)
.

Next we expand the expression (i+1)3 using the binomial formula (Theorem 38.2)

(i+ 1)3 = i3 + 3i2 + 3i+ 1.

Substituting this into the telescoping sum gives (notice that the i3 terms cancel)

(n+ 1)3 = 1 +

n∑
i=1

(3i2 + 3i+ 1).

Now we split the sum into three pieces and add each piece individually,

(n+ 1)3 = 1 + 3
n∑

i=1

i2 + 3
n∑

i=1

i+
n∑

i=1

1

= 1 + 3Rn + 3Tn + n.

But we already know that Tn =
∑n

i=1 i is equal to (n2 + n)/2, so we can solve
for Rn,

Rn =
(n+ 1)3 − n− 1

3
− Tn

=
n3 + 3n2 + 2n

3
− n2 + n

2

=
2n3 + 3n2 + n

6
.

That was a lot of algebra, but we are amply rewarded for our efforts by the
beautiful formula

12 + 22 + 32 + · · ·+ n2 =
2n3 + 3n2 + n

6
.

Notice how nifty this formula is. If we want to compute the value of

12 + 22 + 32 + 42 + · · ·+ 99992 + 100002,
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we could add 10000 terms, but using the formula for Rn, we only need to compute

R10000 =
2 · 100003 + 3 · 100002 + 10000

6
= 333,383,335,000.

Now take a deep breath, because we next tackle the problem of adding sums of
kth powers for higher values of k. We write

Fk(n) = 1k + 2k + 3k + · · ·+ nk

for the sum of the first n numbers, each raised to the kth power.
The telescoping sum method that worked so well computing sums of squares

works just as well for higher powers. We begin with the telescoping sum

(n+ 1)k = 1k + (2k − 1k) + (3k − 2k) + · · ·+
(
(n+ 1)k − nk

)
,

which, using summation notation, becomes

(n+ 1)k = 1 +

n∑
i=1

(
(i+ 1)k − ik

)
.

Just as before, we expand (i+ 1)k using the binomial formula (Theorem 38.2),

(i+ 1)k =
k∑

j=0

(
k

j

)
ij .

The last term (i.e., the j = k term) is ik, so it cancels the ik in the telescoping sum,
leaving

(n+ 1)k = 1 +

n∑
i=1

k−1∑
j=0

(
k

j

)
ij .

Now switch the order of the two sums, and lo and behold, we find the power sums
F0(n), F1(n), . . . , Fk−1(n) appearing,

(n+ 1)k = 1 +
k−1∑
j=0

(
k

j

) n∑
i=1

ij = 1 +
k−1∑
j=0

(
k

j

)
Fj(n).

What good is a formula like this, which seems to involve all sorts of quantities
that we don’t know? The answer is that it relates each of F0(n), F1(n), F2(n), . . .
with the previous ones. To make this clearer, we pull off the last term in the sum,
that is, the term with j = k − 1, and we move all the other terms to the other side,(

k

k − 1

)
Fk−1(n) = (n+ 1)k − 1−

k−2∑
j=0

(
k

j

)
Fj(n).
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Now
(

k
k−1

)
= k, so dividing by k gives the recursive formula

Fk−1(n) =
(n+ 1)k − 1

k
− 1

k

k−2∑
j=0

(
k

j

)
Fj(n).

We call this a recursive formula for the Fk’s, because it expresses each Fk in terms
of the previous ones. It is thus similar in some ways to the recursive formula used to
describe the Fibonacci sequence (Chapter 39), although this formula is obviously
much more complicated than the Fibonacci formula.

Let’s use the recursive formula to find a new power-sum formula. Taking k = 4
in the recursive formula gives

F3(n) =
(n+ 1)4 − 1

4
− 1

4

{(
4

0

)
F0(n) +

(
4

1

)
F1(n) +

(
4

2

)
F2(n)

}
.

We already know from our earlier work that

F1(n) = Tn =
n2 + n

2
and F2(n) = Rn =

2n3 + 3n2 + n

6
,

while the value of F0(n) is clearly equal to

F0(n) = 10 + 20 + · · ·+ n0 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n terms

= n.

Substituting in these values for F0(n), F1(n), and F2(n) yields

F3(n) =
(n+ 1)4 − 1

4
− 1

4

{(
4

0

)
F0(n) +

(
4

1

)
F1(n) +

(
4

2

)
F2(n)

}
=

n4 + 4n3 + 6n2 + 4n+ 1− 1

4

− 1

4

{
n+ 4

n2 + n

2
+ 6

2n3 + 3n2 + n

6

}
=

n4 + 2n3 + n2

4
.

Thus

F3(n) = 13 + 23 + 33 + · · ·+ n3 =
n4 + 2n3 + n2

4
.

For example,

13 + 23 + 33 + 43 + · · ·+ 100003 =
100004 + 2 · 100003 + 100002

4
= 2,500,500,025,000,000.
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The recursive formula for power sums is very beautiful, so we record our dis-
covery in the form of a theorem.

Theorem 50.1 (Sum of Powers Theorem). Let k ≥ 0 be an integer. There is a
polynomial Fk(X) of degree k + 1 such that

Fk(n) = 1k + 2k + 3k + · · ·+ nk for every value of n = 1, 2, 3, . . . .

These polynomials can be computed using the recurrence formula

Fk−1(X) =
(X + 1)k − 1

k
− 1

k

k−2∑
i=0

(
k

i

)
Fi(X).

Proof. We proved above that the power sums can be computed by the recurrence
formula. It is also clear from the recurrence formula that the power sums are
polynomials, since each successive power sum is simply the polynomial (X+1)k−1

k
adding to some multiples of the previous power sums.

All that remains is to prove that Fk(X) has degree k + 1. We use induction.
To start the induction, we observe that F0(X) = X has the correct degree. Now
suppose that we know that Fk(X) has degree k + 1 for k = 0, 1, 2, . . . ,m− 1. In
other words, suppose we’ve finished the proof for all values of k less than m. We
use the recurrence formula with k = m+ 1 to compute

Fm(X) =
(X + 1)m+1 − 1

m+ 1
− 1

m+ 1

m−1∑
i=0

(
m+ 1

i

)
Fi(X).

The first part looks like

(X + 1)m+1 − 1

m+ 1
=

1

m+ 1
Xm+1 + · · · .

On the other hand, by the induction hypothesis we know that Fi(X) has degree
i+ 1 for each i = 0, 1, . . . ,m− 1, so the polynomials in the sum have degree at
most m. This proves that the Xm+1 coming from the first part isn’t canceled by
any of the other terms, so Fm(X) has degree m+ 1. This completes our induction
proof.

We’ve computed the power-sum polynomials

F1(X) =
1

2

(
X2 +X

)
,

F2(X) =
1

6

(
2X3 + 3X2 +X

)
,

F3(X) =
1

4

(
X4 + 2X3 +X2

)
.
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Now it’s your turn to compute the next few power-sum polynomials, so turn to
Exercise 50.2 and use the recursive formula to compute F4(X) and F5(X). Be
sure to check your answers.

Lest you feel that I’ve done the easy computations and you’ve been stuck with
the hard ones, here are the next few power-sum polynomials.

F6(X) =
1

42

(
6X7 + 21X6 + 21X5 − 7X3 +X

)
F7(X) =

1

24

(
3X8 + 12X7 + 14X6 − 7X4 + 2X2

)
F8(X) =

1

90

(
10X9 + 45X8 + 60X7 − 42X5 + 20X3 − 3X

)
F9(X) =

1

20

(
2X10 + 10X9 + 15X8 − 14X6 + 10X4 − 3X2

)
F10(X) =

1

66

(
6X11 + 33X10 + 55X9 − 66X7 + 66X5 − 33X3 + 5X

)
You can use this list to look for patterns and to test conjectures.

Three-Dimensional Number Shapes
In our work on number theory and geometry, we have studied various sorts of num-
ber shapes, such as triangular numbers and square numbers (Chapters 1 and 31)
and even pentagonal numbers (Exercise 31.4). Triangles, squares, and pentagons
are plane figures; that is, they lie on a flat surface. We, on the other hand, live in
three-dimensional space, so it’s about time we looked at three-dimensional number
shapes. We’ll build pyramids with triangular bases, as illustrated in Figure 50.1.

1

3

6

+10
20

1
+3

4

1

3

+6
10

Figure 50.1: The Tetrahedral Numbers T2 = 4, T3 = 10, and T4 = 20

The fancy mathematical term for this sort of solid shape is a tetrahedron. We
define the nth Tetrahedral Number to be the number of dots in a tetrahedron with
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n layers, and we let

Tn = the nth Tetrahedral Number.

Looking at Figure 50.1, we see that

T1 = 1, T2 = 4, T3 = 10, and T4 = 20.

The pictures illustrate how tetrahedral numbers are formed,

T1 = 1,

T2 = 4 = 1 + 3,

T3 = 10 = 1 + 3 + 6,

T4 = 20 = 1 + 3 + 6 + 10.

To form the fifth tetrahedral number, we need to add another triangle onto the bot-
tom of the previous tetrahedron. In other words, we need to add the next triangular
number to the previous tetrahedral number. If this isn’t clear, notice how T4 is
formed by adding the first four triangular numbers: 1, 3, 6, and 10. So to get T5,
we take T4 and add on the fifth triangular number T5 = 15 to get

T5 = T4 + T5 = (1 + 3 + 6 + 10) + 15 = 35.

In general, the nth tetrahedral number is equal to the sum of the first n triangular
numbers,

Tn = T1 + T2 + T3 + · · ·+ Tn.

We know that the nth triangular number Tn is given by

Tn =
n2 + n

2
,

so we can find a formula for Tn by adding

Tn =

n∑
j=1

Tj =

n∑
j=1

j2 + j

2
=

1

2

n∑
j=1

j2 +
1

2

n∑
j=1

j.

To finish the calculation, we use our power-sum formulas, in particular our formula
for the sum of the first n squares, to compute

Tn =
1

2

(
2n3 + 3n2 + n

6

)
+

1

2

(
n2 + n

2

)
=

n3 + 3n2 + 2n

6
.
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It is interesting to observe that the tetrahedral polynomial factors as

Tn =
n(n+ 1)(n+ 2)

6
.

Thus the nth triangular number and the nth tetrahedral number can be expressed
using binomial coefficients

Tn =

(
n+ 1

2

)
and Tn =

(
n+ 2

3

)
.

In other words, the nth two-dimensional pyramid (triangle) has
(
n+1
2

)
dots, and the

nth three-dimensional pyramid (tetrahedron) has
(
n+2
3

)
dots. How many dots do

you think it takes to fill up a four-dimensional pyramid?

Exercises
50.1. In the text we used a telescoping sum to prove that the quantity Sn = 1

1·2 + 1
2·3 +

1
3·4 + 1

4·5 + · · · + 1
(n−1)·n is equal to n−1

n . Use induction to give a different proof of this
formula.

50.2. (a) Use the recursive formula to compute the polynomial F4(X). Be sure to check
your answer by computing F4(1), F4(2), and F4(3) and verifying that they equal 1,
1 + 24 = 17, and 1 + 24 + 34 = 98, respectively.

(b) Find the polynomial F5(X) and check your answer as in (a).

50.3. (a) Prove that the leading coefficient of Fk(X) is 1
k+1 . In other words, prove

that Fk(X) looks like

Fk(X) =
1

k + 1
Xk+1 + aXk + bXk−1 + · · · .

(b) Try to find a similar formula for the next coefficient (i.e., the coefficient of Xk) in the
polynomial Fk(X).

(c) Find a formula for the coefficient of Xk−1 in the polynomial Fk(X).

50.4. (a) What is the value of Fk(0)?
(b) What is the value of Fk(−1)?
(c) If p is a prime number and if p− 1 - k, prove that

1k + 2k + · · ·+ (p− 1)k ≡ 0 (mod p).

What is the value when p− 1 divides k?
(d) What is the value of Fk(−1/2)? More precisely, try to find a large collection of k’s

for which you can guess (and prove correct) the value of Fk(−1/2).
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50.5. Prove the remarkable fact that

(1 + 2 + 3 + · · ·+ n)2 = 13 + 23 + 33 + · · ·+ n3.

50.6. The coefficients of the polynomial Fk(X) are rational numbers. We would like to
multiply by some integer to clear all the denominators. For example,

F1(X) = 1
2X

2 + 1
2X and F2(X) = 1

3X
3 + 1

2X
2 + 1

6X ,

so 2 · F1(X) and 6 · F2(X) have coefficients that are integers.
(a) Prove that

(k + 1)! · Fk(X)

has integer coefficients.
(b) It is clear from the examples in this chapter that (k + 1)! is usually much larger than

necessary for clearing the denominators of the coefficients of Fk(X). Can you find
any sort of patterns in the actual denominator?

50.7. A pyramid with a square base of side n requires F2(n) dots, so F2(n) is the nth

Square Pyramid Number. In Chapter 31 we found infinitely many numbers that are both
triangular and square. Search for numbers that are both tetrahedral and square pyramid
numbers. Do you think there are finitely many, or infinitely many, such numbers?

50.8. (a) Find a simple expression for the sum

T1 + T2 + T3 + · · ·+ Tn

of the first n tetrahedral numbers.
(b) Express your answer in (a) as a single binomial coefficient.
(c) Try to understand and explain the following statement: “The number T1+T2+ · · ·+

Tn is the number of dots needed to form a pyramid shape in four-dimensional space.”

50.9. The nth triangular number Tn equals the binomial coefficient
(
n+1
2

)
, and the nth

tetrahedral number Tn equals the binomial coefficient
(
n+2
3

)
. This means that the formula

Tn = T1 + T2 + · · ·+ Tn can be written using binomial coefficients as(
2

2

)
+

(
3

2

)
+

(
4

2

)
+ · · ·+

(
n+ 1

2

)
=

(
n+ 2

3

)
.

(a) Illustrate this formula for n = 5 by taking Pascal’s Triangle (see Chapter 38), circling
the numbers

(
2
2

)
,
(
3
2

)
, . . . ,

(
6
2

)
, and putting a box around their sum

(
7
3

)
.

(b) Write the formula 1+2+3+ · · ·+n = Tn using binomial coefficients and illustrate
your formula for n = 5 using Pascal’s Triangle as in (a). [Hint.

(
n
1

)
= n.]

(c) Generalize these formulas to write a sum of binomial coefficients
(
r
r

)
,
(
r+1
r

)
, . . . in

terms of a binomial coefficient.
(d) Prove that your formula in (c) is correct.
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50.10. This exercise and the next one give an explicit formula for the sum of kth powers
that was studied in this chapter. Stirling numbers (of the second kind) are defined to be the
integers S(k, j) that make the following polynomial equation true:

xk =
k∑

j=0

S(k, j)x(x− 1)(x− 2) · · · (x− j + 1).

For example, taking k = 1 gives

x = S(1, 0) + S(1, 1)x, so S(1, 0) = 0 and S(1, 1) = 1.

Similarly, taking k = 2 gives

x2 = S(2, 0) + S(2, 1)x+ S(2, 2)x(x+ 1)

= S(2, 0) + (S(2, 1) + S(2, 2))x+ S(2, 2)x2,

so
S(2, 0) = 0 and S(2, 2) = 1 and S(2, 1) = −1.

(a) Compute the value of S(3, j) for j = 0, 1, 2, 3 and S(4, j) for j = 0, 1, 2, 3, 4.
(b) Prove that the Stirling numbers satisfy the recurrence

S(k, j) = S(k, j − 1) + jS(k, j).

(c) Prove that the Stirling numbers are given by the following formula:

S(k, j) =
1

j!

j∑
i=0

(−1)j−i

(
j

i

)
ik.

50.11. Prove that the sum of kth powers is given by the following explicit formula using
the Stirling numbers S(k, j) defined in the previous exercise.

1k + 2k + · · ·+ nk =
k∑

j=0

S(k, j)

j + 1
(n+ 1)n(n− 1)(n− 2) · · · (n− j + 1).

50.12 (For students who know calculus). Let P0(x) be the polynomial

P0(x) = 1 + x+ x2 + x3 + · · ·+ xn−1.

Next let

P1(x) =
d

dx

(
xP0(x)

)
, and P2(x) =

d

dx

(
xP1(x)

)
, and so on.

(a) What does Pk(x) look like? What is the value of Pk(1)? [Hint. The answer has
something to do with the material in this chapter.]
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(b) The polynomial P0(x) is the geometric sum that we used in Chapter 14. Recall that
the formula for the geometric sum is P0(x) = (xn − 1)/(x− 1), at least provided
that x ̸= 1. Compute the limit

lim
x→1

xn − 1

x− 1

and check that it gives the same value as P0(1). [Hint. Use L’Hôpital’s rule.]
(c) Find a formula for P1(x) by differentiating,

P1(x) =
d

dx

(
x
xn − 1

x− 1

)
.

(d) Compute the limit of your formula in (c) as x → 1. Explain why this gives a new
proof for the value of 1 + 2 + · · ·+ n.

(e) Starting with your formula in (c), repeat (c) and (d) to find a formula for P2(x) and
for the limit of P2(x) as x → 1.

(f) Starting with your formula in (e), repeat (c) and (d) to find a formula for P3(x) and
for the limit of P3(x) as x → 1.

50.13. Fix an integer k ≥ 0 and let Fk(n) = 1k + 2k + · · · + nk be the sum of powers
studied in this chapter. Let

A(x) = generating function of the sequence Fk(0), Fk(1), Fk(2), Fk(3), . . .

= Fk(1)x+ Fk(2)x
2 + Fk(3)x

3 + · · · ,
B(x) = generating function of the sequence 0k, 1k, 2k, 3k, . . .

= x+ 2kx2 + 3kx3 + 4kx4 + · · · .

Find a simple formula relating A(x) and B(x).



Appendix A

Factorization of Small
Composite Integers [online]

The following table gives the factorization of small composite integers that are not
divisible by 2, 3, or 5. To use this table, first divide your number by powers of 2, 3,
and 5 until no such factors remain; then look it up in the table.

49 = 72 77 = 7 · 11 91 = 7 · 13 119 = 7 · 17
121 = 112 133 = 7 · 19 143 = 11 · 13 161 = 7 · 23
169 = 132 187 = 11 · 17 203 = 7 · 29 209 = 11 · 19
217 = 7 · 31 221 = 13 · 17 247 = 13 · 19 253 = 11 · 23
259 = 7 · 37 287 = 7 · 41 289 = 172 299 = 13 · 23
301 = 7 · 43 319 = 11 · 29 323 = 17 · 19 329 = 7 · 47
341 = 11 · 31 343 = 73 361 = 192 371 = 7 · 53
377 = 13 · 29 391 = 17 · 23 403 = 13 · 31 407 = 11 · 37
413 = 7 · 59 427 = 7 · 61 437 = 19 · 23 451 = 11 · 41
469 = 7 · 67 473 = 11 · 43 481 = 13 · 37 493 = 17 · 29
497 = 7 · 71 511 = 7 · 73 517 = 11 · 47 527 = 17 · 31
529 = 232 533 = 13 · 41 539 = 72 · 11 551 = 19 · 29
553 = 7 · 79 559 = 13 · 43 581 = 7 · 83 583 = 11 · 53
589 = 19 · 31 611 = 13 · 47 623 = 7 · 89 629 = 17 · 37
637 = 72 · 13 649 = 11 · 59 667 = 23 · 29 671 = 11 · 61
679 = 7 · 97 689 = 13 · 53 697 = 17 · 41 703 = 19 · 37
707 = 7 · 101 713 = 23 · 31 721 = 7 · 103 731 = 17 · 43
737 = 11 · 67 749 = 7 · 107 763 = 7 · 109 767 = 13 · 59
779 = 19 · 41 781 = 11 · 71 791 = 7 · 113 793 = 13 · 61
799 = 17 · 47 803 = 11 · 73 817 = 19 · 43 833 = 72 · 17
841 = 292 847 = 7 · 112 851 = 23 · 37 869 = 11 · 79
871 = 13 · 67 889 = 7 · 127 893 = 19 · 47 899 = 29 · 31
901 = 17 · 53 913 = 11 · 83 917 = 7 · 131 923 = 13 · 71
931 = 72 · 19 943 = 23 · 41 949 = 13 · 73 959 = 7 · 137
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961 = 312 973 = 7 · 139 979 = 11 · 89 989 = 23 · 43
1001 = 7 · 11 · 13 1003 = 17 · 59 1007 = 19 · 53 1027 = 13 · 79
1037 = 17 · 61 1043 = 7 · 149 1057 = 7 · 151 1067 = 11 · 97
1073 = 29 · 37 1079 = 13 · 83 1081 = 23 · 47 1099 = 7 · 157
1111 = 11 · 101 1121 = 19 · 59 1127 = 72 · 23 1133 = 11 · 103
1139 = 17 · 67 1141 = 7 · 163 1147 = 31 · 37 1157 = 13 · 89
1159 = 19 · 61 1169 = 7 · 167 1177 = 11 · 107 1183 = 7 · 132
1189 = 29 · 41 1199 = 11 · 109 1207 = 17 · 71 1211 = 7 · 173
1219 = 23 · 53 1241 = 17 · 73 1243 = 11 · 113 1247 = 29 · 43
1253 = 7 · 179 1261 = 13 · 97 1267 = 7 · 181 1271 = 31 · 41
1273 = 19 · 67 1309 = 7 · 11 · 17 1313 = 13 · 101 1331 = 113

1333 = 31 · 43 1337 = 7 · 191 1339 = 13 · 103 1343 = 17 · 79
1349 = 19 · 71 1351 = 7 · 193 1357 = 23 · 59 1363 = 29 · 47
1369 = 372 1379 = 7 · 197 1387 = 19 · 73 1391 = 13 · 107
1393 = 7 · 199 1397 = 11 · 127 1403 = 23 · 61 1411 = 17 · 83
1417 = 13 · 109 1421 = 72 · 29 1441 = 11 · 131 1457 = 31 · 47
1463 = 7 · 11 · 19 1469 = 13 · 113 1477 = 7 · 211 1501 = 19 · 79
1507 = 11 · 137 1513 = 17 · 89 1517 = 37 · 41 1519 = 72 · 31
1529 = 11 · 139 1537 = 29 · 53 1541 = 23 · 67 1547 = 7 · 13 · 17
1561 = 7 · 223 1573 = 112 · 13 1577 = 19 · 83 1589 = 7 · 227
1591 = 37 · 43 1603 = 7 · 229 1631 = 7 · 233 1633 = 23 · 71
1639 = 11 · 149 1643 = 31 · 53 1649 = 17 · 97 1651 = 13 · 127
1661 = 11 · 151 1673 = 7 · 239 1679 = 23 · 73 1681 = 412

1687 = 7 · 241 1691 = 19 · 89 1703 = 13 · 131 1711 = 29 · 59
1717 = 17 · 101 1727 = 11 · 157 1729 = 7 · 13 · 19 1739 = 37 · 47
1751 = 17 · 103 1757 = 7 · 251 1763 = 41 · 43 1769 = 29 · 61
1771 = 7 · 11 · 23 1781 = 13 · 137 1793 = 11 · 163 1799 = 7 · 257
1807 = 13 · 139 1813 = 72 · 37 1817 = 23 · 79 1819 = 17 · 107
1829 = 31 · 59 1837 = 11 · 167 1841 = 7 · 263 1843 = 19 · 97
1849 = 432 1853 = 17 · 109 1859 = 11 · 132 1883 = 7 · 269
1891 = 31 · 61 1897 = 7 · 271 1903 = 11 · 173 1909 = 23 · 83
1919 = 19 · 101 1921 = 17 · 113 1927 = 41 · 47 1937 = 13 · 149
1939 = 7 · 277 1943 = 29 · 67 1957 = 19 · 103 1961 = 37 · 53
1963 = 13 · 151 1967 = 7 · 281 1969 = 11 · 179 1981 = 7 · 283
1991 = 11 · 181 2009 = 72 · 41 2021 = 43 · 47 2023 = 7 · 172
2033 = 19 · 107 2041 = 13 · 157 2047 = 23 · 89 2051 = 7 · 293
2057 = 112 · 17 2059 = 29 · 71 2071 = 19 · 109 2077 = 31 · 67
2093 = 7 · 13 · 23 2101 = 11 · 191 2107 = 72 · 43 2117 = 29 · 73
2119 = 13 · 163 2123 = 11 · 193 2147 = 19 · 113 2149 = 7 · 307
2159 = 17 · 127 2167 = 11 · 197 2171 = 13 · 167 2173 = 41 · 53
2177 = 7 · 311 2183 = 37 · 59 2189 = 11 · 199 2191 = 7 · 313
2197 = 133 2201 = 31 · 71 2209 = 472 2219 = 7 · 317
2227 = 17 · 131 2231 = 23 · 97 2233 = 7 · 11 · 29 2249 = 13 · 173
2257 = 37 · 61 2261 = 7 · 17 · 19 2263 = 31 · 73 2279 = 43 · 53
2291 = 29 · 79 2299 = 112 · 19 2303 = 72 · 47 2317 = 7 · 331
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A List of Primes [online]

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601
607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733
739 743 751 757 761 769 773 787 797 809
811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941
947 953 967 971 977 983 991 997 1009 1013

1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151
1153 1163 1171 1181 1187 1193 1201 1213 1217 1223
1229 1231 1237 1249 1259 1277 1279 1283 1289 1291
1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
1381 1399 1409 1423 1427 1429 1433 1439 1447 1451
1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
1523 1531 1543 1549 1553 1559 1567 1571 1579 1583
1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
1663 1667 1669 1693 1697 1699 1709 1721 1723 1733
1741 1747 1753 1759 1777 1783 1787 1789 1801 1811
1823 1831 1847 1861 1867 1871 1873 1877 1879 1889
1901 1907 1913 1931 1933 1949 1951 1973 1979 1987
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1993 1997 1999 2003 2011 2017 2027 2029 2039 2053
2063 2069 2081 2083 2087 2089 2099 2111 2113 2129
2131 2137 2141 2143 2153 2161 2179 2203 2207 2213
2221 2237 2239 2243 2251 2267 2269 2273 2281 2287
2293 2297 2309 2311 2333 2339 2341 2347 2351 2357
2371 2377 2381 2383 2389 2393 2399 2411 2417 2423
2437 2441 2447 2459 2467 2473 2477 2503 2521 2531
2539 2543 2549 2551 2557 2579 2591 2593 2609 2617
2621 2633 2647 2657 2659 2663 2671 2677 2683 2687
2689 2693 2699 2707 2711 2713 2719 2729 2731 2741
2749 2753 2767 2777 2789 2791 2797 2801 2803 2819
2833 2837 2843 2851 2857 2861 2879 2887 2897 2903
2909 2917 2927 2939 2953 2957 2963 2969 2971 2999
3001 3011 3019 3023 3037 3041 3049 3061 3067 3079
3083 3089 3109 3119 3121 3137 3163 3167 3169 3181
3187 3191 3203 3209 3217 3221 3229 3251 3253 3257
3259 3271 3299 3301 3307 3313 3319 3323 3329 3331
3343 3347 3359 3361 3371 3373 3389 3391 3407 3413
3433 3449 3457 3461 3463 3467 3469 3491 3499 3511
3517 3527 3529 3533 3539 3541 3547 3557 3559 3571
3581 3583 3593 3607 3613 3617 3623 3631 3637 3643
3659 3671 3673 3677 3691 3697 3701 3709 3719 3727
3733 3739 3761 3767 3769 3779 3793 3797 3803 3821
3823 3833 3847 3851 3853 3863 3877 3881 3889 3907
3911 3917 3919 3923 3929 3931 3943 3947 3967 3989
4001 4003 4007 4013 4019 4021 4027 4049 4051 4057
4073 4079 4091 4093 4099 4111 4127 4129 4133 4139
4153 4157 4159 4177 4201 4211 4217 4219 4229 4231
4241 4243 4253 4259 4261 4271 4273 4283 4289 4297
4327 4337 4339 4349 4357 4363 4373 4391 4397 4409
4421 4423 4441 4447 4451 4457 4463 4481 4483 4493
4507 4513 4517 4519 4523 4547 4549 4561 4567 4583
4591 4597 4603 4621 4637 4639 4643 4649 4651 4657
4663 4673 4679 4691 4703 4721 4723 4729 4733 4751
4759 4783 4787 4789 4793 4799 4801 4813 4817 4831
4861 4871 4877 4889 4903 4909 4919 4931 4933 4937
4943 4951 4957 4967 4969 4973 4987 4993 4999 5003
5009 5011 5021 5023 5039 5051 5059 5077 5081 5087
5099 5101 5107 5113 5119 5147 5153 5167 5171 5179
5189 5197 5209 5227 5231 5233 5237 5261 5273 5279
5281 5297 5303 5309 5323 5333 5347 5351 5381 5387
5393 5399 5407 5413 5417 5419 5431 5437 5441 5443
5449 5471 5477 5479 5483 5501 5503 5507 5519 5521
5527 5531 5557 5563 5569 5573 5581 5591 5623 5639
5641 5647 5651 5653 5657 5659 5669 5683 5689 5693


