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Preface

The 1990s saw a wave of calculus reform whose aim was to teach students to think
for themselves and to solve substantial problems, rather than merely memorizing
formulas and performing rote algebraic manipulations. This book has a similar,
albeit somewhat more ambitious, goal: to lead you to think mathematically and
to experience the thrill of independent intellectual discovery. Our chosen subject,
Number Theory, is particularly well suited for this purpose. The natural numbers
1, 2, 3, . . . satisfy a multitude of beautiful patterns and relationships, many of
which can be discerned at a glance; others are so subtle that one marvels they were
noticed at all. Experimentation requires nothing more than paper and pencil, but
many false alleys beckon to those who make conjectures on too scanty evidence. It
is only by rigorous demonstration that one is finally convinced that the numerical
evidence reflects a universal truth. This book will lead you through the groves
wherein lurk some of the brightest flowers of Number Theory, as it simultaneously
encourages you to investigate, analyze, conjecture, and ultimately prove your own
beautiful number theoretic results.

This book was originally written to serve as a text for Math 42, a course created
by Jeff Hoffstein at Brown University in the early 1990s. Math 42 was designed to
attract nonscience majors, those with little interest in pursuing the standard calculus
sequence, and to convince them to study some college mathematics. The intent was
to create a course similar to one on, say, “The Music of Mozart” or “Elizabethan
Drama,” wherein an audience is introduced to the overall themes and methodology
of an entire discipline through the detailed study of a particular facet of the subject.
Math 42 has been extremely successful, attracting both its intended audience and
also scientifically oriented undergraduates interested in a change of pace from their
large-lecture, cookbook-style courses.

The prerequisites for reading this book are few. Some facility with high school
algebra is required, and those who know how to program a computer will have fun
generating reams of data and implementing assorted algorithms, but in truth the
reader needs nothing more than a simple calculator. Concepts from calculus are
mentioned in passing, but are not used in an essential way. However, and the reader

v
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is hereby forewarned, it is not possible to truly appreciate Number Theory without
an eager and questioning mind and a spirit that is not afraid to experiment, to make
mistakes and profit from them, to accept frustration and persevere to the ultimate
triumph. Readers who are able to cultivate these qualities will find themselves
richly rewarded, both in their study of Number Theory and their appreciation of all
that life has to offer.
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Changes in the Fourth Edition

There are a number of major changes in the fourth edition.

• There is a new chapter on mathematical induction (Chapter 26).

• Some material on proof by contradiction has been moved forward to Chap-
ter 8. It is used in the proof that a polynomial of degree d has at most d
roots modulo p. This fact is then used in place of primitive roots as a tool to
prove Euler’s quadratic residue formula in Chapter 21. (In earlier editions,
primitive roots were used for this proof.)

• The chapters on primitive roots (Chapters 28–29) have been moved to follow
the chapters on quadratic reciprocity and sums of squares (Chapters 20–25).
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The rationale for this change is the author’s experience that students find the
Primitive Root Theorem to be among the most difficult in the book. The new
order allows the instructor to cover quadratic reciprocity first, and to omit
primitive roots entirely if desired.

• Chapter 22 now includes a proof of part of quadratic reciprocity for Jacobi
symbols, with the remaining parts included as exercises.

• Quadratic reciprocity is now proved in full. The proofs for
(−1

p

)
and

(
2
p

)
remain as before in Chapter 21, and there is a new chapter (Chapter 23) that
gives Eisenstein’s proof for

(p
q

)(q
p

)
. Chapter 23 is significantly more difficult

than the chapters that precede it, and it may be omitted without affecting the
subsequent chapters.

• As an application of primitive roots, Chapter 28 discusses the construction
of Costas arrays.

• Chapter 39 includes a proof that the period of the Fibonacci sequence mod-
ulo p divides p− 1 when p is congruent to 1 or 4 modulo 5.

• There are many new exercises scattered throughout the text.

• A flowchart giving chapter dependencies is included on page ix.

• Number theory is a vast and sprawling subject, and over the years this book
has acquired many new chapters. In order to keep the length of this edition
to a reasonable size, Chapters 47–50 have been removed from the printed
version of the book. These omitted chapters are freely available online at
http://www.math.brown.edu/˜jhs/frint.html
http://www.pearsonhighered.com/mathstatsresources

The online chapters are included in the index.

Email and Electronic Resources

All the people listed above have helped me to correct numerous mistakes and to
greatly refine the exposition, but no book is ever free from error or incapable of
being improved. I would be delighted to receive comments, good or bad, and
corrections from my readers. You can send mail to me at

jhs@math.brown.edu

Additional material, including extra chapters, an errata sheet, links to interesting
number theoretic sites, and downloadable versions of various computer exercises,
are available on the Friendly Introduction to Number Theory Home Page:

www.math.brown.edu/˜jhs/frint.html

Joseph H. Silverman
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Introduction

Euclid alone
Has looked on Beauty bare. Fortunate they
Who, though once only and then but far away,
Have heard her massive sandal set on stone.

Edna St. Vincent Millay (1923)

The origins of the natural numbers 1, 2, 3, 4, 5, 6, . . . are lost in the mists of
time. We have no knowledge of who first realized that there is a certain concept of
“threeness” that applies equally well to three rocks, three stars, and three people.
From the very beginnings of recorded history, numbers have inspired an endless
fascination—mystical, aesthetic, and practical as well. It is not just the numbers
themselves, of course, that command attention. Far more intriguing are the rela-
tionships that numbers exhibit, one with another. It is within these profound and
often subtle relationships that one finds the Beauty1 so strikingly described in Edna
St. Vincent Millay’s poem. Here is another description by a celebrated twentieth-
century philosopher.

Mathematics, rightly viewed, possesses not only truth, but supreme
beauty—a beauty cold and austere, like that of sculpture, without ap-
peal to any part of our weaker nature, without the gorgeous trappings
of paintings or music, yet sublimely pure, and capable of a stern per-
fection such as only the greatest art can show. (Bertrand Russell, 1902)

The Theory of Numbers is that area of mathematics whose aim is to uncover
the many deep and subtle relationships among different sorts of numbers. To take
a simple example, many people through the ages have been intrigued by the square
numbers 1, 4, 9, 16, 25, . . . . If we perform the experiment of adding together pairs

1Euclid, indeed, has looked on Beauty bare, and not merely the beauty of geometry that most
people associate with his name. Number theory is prominently featured in Books VII, VIII, and IX
of Euclid’s famous Elements.
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of square numbers, we will find that occasionally we get another square. The most
famous example of this phenomenon is

32 + 42 = 52,

but there are many others, such as

52 + 122 = 132, 202 + 212 = 292, 282 + 452 = 532.

Triples like (3, 4, 5), (5, 12, 13), (20, 21, 29), and (28, 45, 53) have been given the
name Pythagorean triples. Based on this experiment, anyone with a lively curiosity
is bound to pose various questions, such as “Are there infinitely many Pythagorean
triples?” and “If so, can we find a formula that describes all of them?” These are
the sorts of questions dealt with by number theory.

As another example, consider the problem of finding the remainder when the
huge number

32478543743921429837645

is divided by 54817263. Here’s one way to solve this problem. Take the number
32478543, multiply it by itself 743921429837645 times, use long division to di-
vide by 54817263, and take the remainder. In principle, this method will work,
but in practice it would take far longer than a lifetime, even on the world’s fastest
computers. Number theory provides a means for solving this problem, too. “Wait a
minute,” I hear you say, “Pythagorean triples have a certain elegance that is pleas-
ing to the eye, but where is the beauty in long division and remainders?” The
answer is not in the remainders themselves, but in the use to which such remain-
ders can be put. In a striking turn of events, mathematicians have shown how the
solution of this elementary remainder problem (and its inverse) leads to the cre-
ation of simple codes that are so secure that even the National Security Agency2

is unable to break them. So much for G.H. Hardy’s singularly unprophetic remark
that “no one has yet discovered any warlike purpose to be served by the theory of
numbers or relativity, and it seems very unlikely that anyone will do so for many
years.”3

The land of Number Theory is populated by a variety of exotic flora and fauna.
There are square numbers and prime numbers and odd numbers and perfect num-
bers (but no square-prime numbers and, as far as anyone knows, no odd-perfect
numbers). There are Fermat equations and Pell equations, Pythagorean triples and

2The National Security Agency (NSA) is the arm of the United States government charged with
data collection, code making, and code breaking. The NSA, with a budget larger than that of the
CIA, is supposedly the single largest employer of mathematicians in the world.

3A Mathematician’s Apology, §28, G.H. Hardy, Camb. Univ. Press, 1940.
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elliptic curves, Fibonacci’s rabbits, unbreakable codes, and much, much more. You
will meet all these creatures, and many others, as we journey through the Theory
of Numbers.

Guide for the Instructor

This book is designed to be used as a text for a one-semester or full-year course
in undergraduate number theory or for an independent study or reading course.
It contains approximately two semesters’ worth of material, so the instructor of a
one-semester course will have some flexibility in the choice of topics. The first 11
chapters are basic, and probably most instructors will want to continue through
the RSA cryptosystem in Chapter 18, since in my experience this is one of the
students’ favorite topics.

There are now many ways to proceed. Here are a few possibilities that seem to
fit comfortably into one semester, but feel free to slice-and-dice the later chapters
to fit your own tastes.

Chapters 20–26, 31–34, and 47–48. Quadratic Reciprocity, sums of squares, in-
duction, Pell’s equation, Diophantine approximation, and continued frac-
tions.

Chapters 30–34 and 41–46. Fermat’s equation for exponent 4, Pell’s equation,
Diophantine approximation, elliptic curves, and Fermat’s Last Theorem.

Chapters 26, 31–39 and 47–48. Induction, Pell’s equation, Diophantine approx-
imation, Gaussian integers, transcendental numbers, binomial coefficients,
linear recurrences, and continued fractions.

Chapters 19–22, 26–29, and 38–40. Primality testing, quadratic reciprocity, in-
duction, primitive roots, binomial coefficients, linear recurrences, big-Oh
notation. (This syllabus is designed in particular for students planning fur-
ther work in computer science or cryptography.)

In any case, a good final project is to have the students read a few of the omitted
chapters and do the exercises.

Most of the nonnumerical nonprogramming exercises in this book are designed
to foster discussion and experimentation. They do not necessarily have “correct”
or “complete” answers. Many students will find this extremely disconcerting at
first, so it must be stressed repeatedly. You can make your students feel more at
ease by prefacing such questions with the phrase “Tell me as much as you can
about . . . .” Tell your students that accumulating data and solving special cases are
not merely acceptable, but encouraged. On the other hand, tell them that there is
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no such thing as a complete solution, since the solution of a good problem always
raises additional questions. So if they can fully answer the specific question given
in the text, their next task is to look for generalizations and for limitations on the
validity of their solution.

Aside from a few clearly marked exercises, calculus is required only in two late
chapters (Big-Oh notation in Chapter 40 and Generating Functions in Chapter 49).
If the class has not taken calculus, these chapters may be omitted with no harm to
the flow of the material.

Number theory is not easy, so there’s no point in trying to convince the stu-
dents that it is. Instead, this book will show your students that they are capable of
mastering a difficult subject and experiencing the intense satisfaction of intellectual
discovery. Your reward as the instructor is to bask in the glow of their endeavors.

Computers, Number Theory, and This Book

At this point I would like to say a few words about the use of computers in con-
junction with this book. I neither expect nor desire that the reader make use of a
high-level computer package such as Maple, Mathematica, PARI, or Derive, and
most exercises (except as otherwise indicated) can be done with a simple pocket
calculator. To take a concrete example, studying greatest common divisors (Chap-
ter 5) by typing GCD[M,N] into a computer is akin to studying electronics by turn-
ing on a television set. Admittedly, computers allow one to do examples with large
numbers, and you will find such computer-generated examples scattered through
the text, but our ultimate goal is always to understand concepts and relationships.
So if I were forced to make a firm ruling, yea or nay, regarding computers, I would
undoubtedly forbid their use.

However, just as with any good rule, certain exceptions will be admitted. First,
one of the best ways to understand a subject is to explain it to someone else; so if
you know a little bit of how to write computer programs, you will find it extremely
enlightening to explain to a computer how to perform the algorithms described
in this book. In other words, don’t rely on a canned computer package; do the
programming yourself. Good candidates for such treatment are the Euclidean al-
gorithm (Chapters 5–6), the RSA cryptosystem (Chapters 16–18), primality testing
(Chapter 19), Quadratic Reciprocity (Chapter 22), writing numbers as sums of two
squares (Chapters 24–25), continued fractions and solving Pell’s equation (Chap-
ters 47—48), and generating rational points on elliptic curves (Chapter 41).

The second exception to the “no computer rule” is generation of data. Dis-
covery in number theory is usually based on experimentation, which may involve
examining reams of data to try to distinguish underlying patterns. Computers are
well suited to generating such data and also sometimes to assist in searching for
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patterns, and I have no objection to their being used for these purposes.
I have included a number of computer exercises and computer projects to en-

courage you to use computers properly as tools to help understand and investigate
the theory of numbers. Some of these exercises can be implemented on a small
computer (or even a programmable calculator), while others require more sophis-
ticated machines and/or programming languages. Exercises and projects requiring
a computer are marked by the symbol .

For many of the projects I have not given a precise formulation, since part of
the project is to decide exactly what the user should input and exactly what form
the output should take. Note that a good computer program must include all the
following features:

• Clearly written documentation explaining what the program does, how to use
it, what quantities it takes as input, and what quantities it returns as output.

• Extensive internal comments explaining how the program works.

• Complete error handling with informative error messages. For example, if
a = b = 0, then the gcd(a, b) routine should return the error message
“gcd(0,0) is undefined” instead of going into an infinite loop or
returning a “division by zero” error.

As you write your own programs, try to make them user friendly and as versatile
as possible, since ultimately you will want to link the pieces together to form your
own package of number theoretic routines.

The moral is that computers are useful as a tool for experimentation and that
you can learn a lot by teaching a computer how to perform number theoretic calcu-
lations, but when you are first learning a subject, a prepackaged computer program
merely provides a crutch that prevents you from learning to walk on your own.


