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Directional discrepancy in two dimensions.

Dmitriy Bilyk, Xiaomin Ma, Jill Pipher, Craig Spencer

Abstract

In the present paper, we study the geometric discrepancy with respect to families of rotated
rectangles. The well-known extremal cases are the axis-parallel rectangles (logarithmic discrep-
ancy) and rectangles rotated in all possible directions (polynomial discrepancy). We study several
intermediate situations: lacunary sequences of directions, lacunary sets of finite order, and sets
with small Minkowski dimension. In each of these cases, extensions of a lemma due to Davenport
allow us to construct appropriate rotations of the integer lattice which yield small discrepancy.

1. Introduction

In the present paper we address the following two-dimensional question in the theory of
irregularities of distribution. Let Ω ⊂ [0, π/2] be a set of directions. We consider the collection
of rectangles pointing in the directions of Ω:

AΩ = {rectangles R : one side of R makes angle φ ∈ Ω with the x-axis}. (1.1)

Taking a set of N points in the unit square, PN ⊂ [0, 1]2, we measure its discrepancy with
respect to AΩ:

DΩ(PN ) = sup
R∈AΩ, R⊂[0,1]2

|DΩ(PN , R)| = sup
R∈AΩ, R⊂[0,1]2

∣∣∣∣#PN ∩R−N · |R|∣∣∣∣. (1.2)

We are interested in the behavior of the quantity

DΩ(N) = inf
PN⊂[0,1]2

DΩ(PN ). (1.3)

as N goes to infinity, depending on the properties of Ω. It is also of interest to consider suitable
(e.g., L2) averages in place of the supremum in (1.2).

The motivation for this question comes from several classical results:
– In the case Ω = {0}, i.e. AΩ is the set of axis-parallel rectangles we have

DΩ ≈ logN. (1.4)

Here, and throughout the paper, we use the notation A . B meaning that there exists an
absolute constant C, independent ofN , such that A ≤ CB, and write A ≈ B if A . B . A.
The lower bound in the estimate above is a celebrated theorem of W. Schmidt [14], while
the upper bound goes back to a century-old result due to Lerch [11]. The inequalities
above continue to hold when Ω is finite (This result is essentially contained in [7]).

– When Ω = [0, π/2], i.e. AΩ consists of rectangles rotated in all possible directions, we have

N
1
4 . DΩ(N) . N

1
4 log

1
2 N. (1.5)

Here both inequalities are due to J. Beck ([2], [3]).
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We see that the behavior of DΩ(N) in these two extreme situations differs drastically. We
would like to know what happens in the intermediate cases, how the geometry of Ω effects the
discrepancy, and where is the threshold between the logarithmic and polynomial estimates.

In this work we look at particular examples: Ω being 1) a lacunary sequence of directions;
2) a lacunary set of finite order (for the definition of such sets and a brief discussion of their
role in analysis see §2.3); or 3) a set with small upper Minkowski dimension, and prove the
following theorem:

Theorem 1.1.
1) Let Ω be a lacunary sequence. Then we have

DΩ(N) . log3N. (1.6)

2) Let Ω be a lacunary set of order M > 1. Then we have

DΩ(N) . log2M+1N. (1.7)

3) Assume Ω has upper Minkowski dimension 0 ≤ d < 1. In this case,

DΩ(N) . N
τ

2(τ+1) +ε, (1.8)

for any ε > 0, where τ = 2
(1−d)2 − 2.

We should point out that, in view of (1.5), the last part yields a new non-trivial estimate
only if d is small enough.

In addition, we complement this theorem with the following L2-averaging estimates. Denote
A′Ω = {R ∈ AΩ : R ⊂ [0, 1]2}, or, alternatively, one may define A′Ω = {R ∈ AΩ : diam(R) ≤
1} with [0, 1]2 viewed as a torus. We have

Theorem 1.2. Let µ be any probability measure on A′Ω. Then
1) If Ω is a lacunary sequence, there exists P ⊂ [0, 1]2, #P = N such that(∫

A′Ω
|DΩ(P, R)|2dµ(R)

) 1
2

. log
5
2 N. (1.9)

2) If Ω is a lacunary set of order M > 1, there exists P ⊂ [0, 1]2, #P = N such that(∫
A′Ω
|DΩ(P, R)|2dµ(R)

) 1
2

. log2M+ 1
2 N. (1.10)

3) If Ω has upper Minkowski dimension 0 ≤ d < 1, there exists P ⊂ [0, 1]2, #P = N such
that (∫

A′Ω
|DΩ(P, R)|2dµ(R)

) 1
2

. N
τ

2(τ+1) +ε, (1.11)

for any ε > 0, where τ = 2
(1−d)2 − 2 satisfies τ < 1.

Comparing the first two parts of the above theorem to those of Theorem 1.1, we see a
manifestation of the well-known discrepancy theory principle that the L∞ (extremal) and L2

(average) discrepancies differ by a factor of
√

logN . This effect can be best seen if one compares
(1.4) to the famous Roth’s L2 lower bound [12] of the order log1/2N (which is sharp, [8]). In
addition, the lower bound in (1.5) is known to be sharp in the L2 sense [4].
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In addition, we also address a ‘sibling’ problem: studying the discrepancy with respect to
collections BΩ,k of convex polygons in [0, 1]2 with at most k sides whose normals point in
the directions defined by Ω (cf. [5], [7] for earlier results) and prove inequalities analogous to
Theorems 1.1 and 1.2 (see Theorems 4.3 and 5.3 in the text).

The paper is organized as follows. The core of the paper is §2 – here we obtain new
diophantine inequalities which enable us to construct well-distributed sets. Section 3 describes
how such inequalities can be translated into upper discrepancy estimates for one-dimensional
sequences. In §4, we deduce our main Theorem 1.1, and §5 deals with bounds for the L2

discrepancy in these settings. In the text, log n stands for max{1, log2 n}.

2. Cassels-Davenport diophantine approximation arguments

In the case Ω = {0}, one of the standard ways of constructing an example of a point-set
satisfying the upper bound of (1.4) involves rotating the lattice N−

1
2 Z2 by an angle α so that

the slope tanα is a badly approximable number, that is, for all p ∈ Z, all q ∈ N we have∣∣∣∣tanα− p

q

∣∣∣∣ & 1
q2
. (2.1)

When Ω is an arbitrary finite set, the construction relies on the following result of Davenport
[9] (which we state here in a particular case, relevant to our problem)

Lemma 2.1. Let Ω = {θ1, θ2, ..., θk} ⊂ [0, π/2]. Then there exists α ∈ [0, π/2] so that

tan(α− θ1), ..., tan(α− θk)

are all badly approximable.

This allows us to find a rotation, which has a badly approximable slope with respect to all
chosen directions θj . Davenport has, in fact, proven this fact for more general functions in place
of the tangent. However, the argument is essentially due to Cassels [6] who proved a similar
result earlier with tan(α− θk) replaced by α− θk.

Thus, analogs of the lemma above for infinite sets Ω may provide us with examples of low-
discrepancy point distributions with respect to rotated rectangles. However, claiming “badly
approximable” in the conclusion is, perhaps, too optimistic. Instead, we shall obtain results, in
which inequalities similar to (2.1) have the right-hand side somewhat smaller than 1/q2. This,
in turn, will lead to larger discrepancy bounds.

2.1. General approach

We first outline a general approach to the proof of statements akin to Lemma 2.1 extending
the ideas of Cassels and Davenport. Assume that for a certain choice of parameters R(n), |In|,
c(n), depending on the set Ω, a proposition of the following type holds:

Proposition 2.2. Let Ω ⊂ [0, π/2]. There exists a sequence of nested intervals I0 ⊃ I1 ⊃
... ⊃ In ⊃ ... in [0, π/2] with |In| → 0 such that for all α ∈ In and all p, q ∈ Z with R(n) ≤ q <
R(n+ 1) we have, for all θ ∈ Ω: ∣∣∣∣tan (α− θ)− p

q

∣∣∣∣ > c(n)
q2

. (2.2)

This would of course imply that:
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Lemma 2.3. There exist α ∈ [0, π/2] and C > 0 such that for all θ ∈ Ω, all p ∈ Z, q ∈ N
we have ∣∣∣∣tan (α− θ)− p

q

∣∣∣∣ > C

q2 f(q)
, (2.3)

where the function f(q) is determined by the relation between c(n) and R(n).

To prove (2.2), one proceeds inductively. At the nth step, the set Ω is covered by at most
Nn intervals of length δn: the dependence between Nn and δn is governed by the geometry of
the set Ω:

– N = const, if Ω is finite;
– N . log 1

δ , if Ω is lacunary;
– N . logM 1

δ , if Ω is lacunary of order M ;
– N ≤ Cε

(
1
δ

)d+ε, if Ω has upper Minkowski dimension d.
Next, one has to choose parameters R(n), |In|, c(n), δn, Nn so that they satisfy two

inequalities, for an appropriately chosen constant C (We initially restrict our range of α to,
say, [α0, π/2− α0], so that, for all θ ∈ Ω, α− θ ∈ [−π/2 + α0, π/2− α0], where the derivative
of tangent is bounded above by some C > 0):

2c(n)
R2(n)

+ C(|In−1|+ δn) <
1

R2(n+ 1)
and (2.4)

|In−1| −Nn
(

2c(n)
R2(n)

+ δn

)
≥ (Nn + 1)|In|. (2.5)

Indeed, assuming that In−1 is constructed, fix one of the chosen intervals Ωkn of length δn.
Suppose that the inequality (2.2) doesn’t hold for two sets of numbers α′, α′′ ∈ In, θ′, θ′′ ∈ Ωkn,
p′, p′′ ∈ Z, R(n) ≤ q′, q′′ < R(n+ 1), then by (2.4)∣∣∣∣p′q′ − p′′

q′′

∣∣∣∣ ≤ ∣∣∣∣p′q′ − tan (α′ − θ′)
∣∣∣∣+
∣∣∣∣p′′q′′ − tan (α′′ − θ′′)

∣∣∣∣+ |tan (α′ − θ′)− tan (α′′ − θ′′)|

≤ 2c(n)
R2(n)

+ C(|α′ − α′′|+ |θ′ − θ′′|) ≤ 2c(n)
R2(n)

+ C(|In−1|+ δn) <
1

R2(n+ 1)
,

which shows that p′/q′ = p′′/q′′ (for otherwise they would have to differ by at least 1
R2(n+1) ),

i.e., there is at most one fraction pk/qk with R(n) ≤ q′, q′′ < R(n+ 1) for each Ωkn for which
(2.2) is violated.

This implies that the inequality is true for α away from

Sn =
Nn⋃
k=1

{
tan−1

{[
pk
qk
− c(n)
R2(n)

,
pk
qk

+
c(n)
R2(n)

]}
+ Ωkn

}
.

Obviously, |Sn| ≤ Nn
(

2c(n)
R2(n) + δn

)
and In−1 \ Sn consists of at most Nn + 1 intervals. Thus,

the validity of (2.5) proves that In−1 \ Sn contains at least one interval of length |In|.
In particular, for a finite set Ω, to prove Davenport’s lemma (Lemma 2.1), one can choose the

parameters R(n) = Rn, c(n) = c (for some R, c > 0), δn = 0, Nn = #Ω. The task of proving
similar lemmata for sets Ω of different types is therefore reduced to the proper choice of these
parameters. The details are taken up in subsequent subsections.

2.2. Lacunary sequences

We recall that a sequence Ω = {ωn}∞n=1 is called lacunary if ωn+1/ωn < A for some A < 1.
For simplicity, we shall consider the set Ω = {2−k}∞k=1, however the argument easily extends
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to more general lacunary sequences. The main geometrical feature of this set for our purposes
is the fact that it can be covered by log2(1/δ) intervals of length δ. We prove

Lemma 2.4. There exist α ∈ [0, π/2] and C > 0 such that for all k ∈ N, all p ∈ Z, q ∈ N
we have ∣∣∣∣tan

(
α− 2−k

)
− p

q

∣∣∣∣ > C

q2 log2 q
. (2.6)

The result of the lemma will follow from the following proposition similar to Proposition 2.2:

Proposition 2.5. There exists a sequence of nested intervals In0 ⊃ In0+1 ⊃ ... ⊃ In ⊃ ...
with

|In| = δ(n+ 2)−(n+2)
(

log(n+ 2)
)−(n+2)

,

such that for all α ∈ In and all p, q ∈ Z with n
n
2
(

log n
)n

2 ≤ q < (n+ 1)
n+1

2
(

log(n+ 1)
)n+1

2 we
have ∣∣∣∣tan

(
α− 2−k

)
− p

q

∣∣∣∣ > c(n)
q2

, (2.7)

where c(n) = c
(n+1)2 log2(n+1)

(for some absolute constants c, δ > 0 and n0 ∈ N.)

Indeed, the proposition implies that there exists α such that for all k ∈ N we have∣∣∣∣tan
(
α− 2−k

)
− p

q

∣∣∣∣ > c′

q2 log2 q
(2.8)

for q ≥ q0 = (n0)
n0+1

2
(

log(n0 + 1)
)n0+1

2 and for some c′ > 0.
Now consider q ≤ q0. Choose integer r, 1 ≤ r ≤ q0 so that qr ≥ q0. Then, if q ≥ 2,∣∣∣∣tan

(
α− 2−k

)
− p

q

∣∣∣∣ =
∣∣∣tan

(
α− 2−k

)
− pr

qr

∣∣∣ > c′

(qr)2 log2(qr)

> c′

q2
0(1+log q0)2

1
q2 log2 q

= c′′

q2 log2 q

for some constant c′′ > 0. The case q = 1 (without the log) is easy.
Proof of Proposition 2.5. We restrict the range of α to [0, π/3] so that α− 2−k ∈ [−1, π/3] ⊂

[−π/3, π/3], so that the derivatives of tan
(
α− 2−k

)
satisfy

1 ≤ 1
cos2 (α− 2−k)

≤ 4.

We arbitrarily choose an initial interval In0−1 ⊂ [−π/3, π/3] with length

|In0−1| = ε(n0 + 1)−(n0+1)
(

log(n0 + 1)
)−(n0+1)

,

where ε is a small constant, and proceed to construct the sequence inductively.
At the nth step we cover Ω by at most Nn = 2(n+ 1) log(n+ 1) intervals of length

δn = 2−Nn = (n+ 1)−2(n+1). We now show that with this choice of parameters (c(n) =
c

(n+1)2 log2(n+1)
, R(n) = n

n
2
(

log n
)n

2 , |In| = ε(n+ 2)−(n+2)
(

log(n+ 2)
)−(n+2)) the inequalities

(2.4) and (2.5) hold for n large enough.
Indeed, one easily verifies (2.4):

2c(n)
nn(log n)n

+ 4(|In−1|+ δn) <
1

(n+ 1)n+1(log(n+ 1))n+1
=

1
R2(n+ 1)

, (2.9)
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for c, ε small. Inequality (2.5) is slightly more subtle, as in this case both sides have roughly
the same order of magnitude in n, so a little extra care should be given to constants. It is easy
to see that, if c� ε and n is large, the left-hand side satisfies

|In−1| −Nn
(

2c(n)
R2(n)

+ δn

)
> 0.99|In−1|, (2.10)

(we have Nn
2c(n)
R2(n) ≈ |In−1| and Nnδn � |In−1| for n large)

On the other hand, for the right-hand side

(Nn + 1)|In| ≤ ε(2(n+ 1) log(n+ 1) + 1)× (n+ 2)−(n+2)
(

log(n+ 2)
)−(n+2)

≤ ε · 2.5 · (n+ 2)−(n+1)
(

log(n+ 2)
)−(n+1) for n large

≤ ε · 2.5 · (n+ 1)−(n+1)
(

log(n+ 1)
)−(n+1)

(
1 +

1
n+ 1

)−(n+1)

≤ ε · 2.5
2.7
· (n+ 1)−(n+1)

(
log(n+ 1)

)−(n+1) for n large

< 0.99 · ε · (n+ 1)−(n+1)(log(n+ 1))−(n+1) = 0.99|In−1|,

where the second inequality from the bottom holds because e > 2.7. Thus, (2.5) holds and the
proof is finished.

2.3. Lacunary sets of finite order

We now turn our attention to lacunary sets of finite order. They are defined inductively

Definition 1. Lacunary set of order one is a lacunary sequence. We call a set Ω lacunary
of order M if it can be covered by the union of a lacunary set Ω′ of order M − 1 with lacunary
sequences converging to every point of Ω′.

These sets play an important role in analysis. In particular, recently M. Bateman [1] proved
that the directional maximal function

MΩf(x) = sup
R∈AΩ: x∈R

1
|R|

∫
R

|f(x)| dx, (2.11)

where AΩ is as defined in (1.1), is bounded on Lp(R2), 1 < p <∞, if and only if Ω is covered
by a finite union of lacunary sets of finite order. This condition is also equivalent to the fact
that Ω does not “admit Kakeya sets” (for details see [1], [15]).

One can check that a lacunary set of order M can be covered by O(logM (1/δ)) intervals of
length δ. A simple example of a lacunary set of order M is a set

Ω = {2−j1 + 2−j2 + ...+ 2−jM }j1,...,jM∈N. (2.12)

In our setting, we have the following statement about such sets:

Lemma 2.6. Let Ω ⊂ [0, π/2] be a lacunary set of orderM ≥ 1. Then there exist α ∈ [0, π/2]
and C > 0 such that for all θ ∈ Ω, all p ∈ Z, q ∈ N we have∣∣∣∣tan (α− θ)− p

q

∣∣∣∣ > C

q2 log2M q
. (2.13)

This lemma is a generalization of Lemma 2.4. For simplicity we deal with Ω as in (2.12)
in which case N(δ) = logM2 (M/δ). We follow the general approach of §2.1 and verify that
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inequalities (2.4) and (2.5) hold for the following choice of parameters

R(n) = (Mn)
Mn
2
(

log n
)Mn

2 ,

|In| = ε(M(n+ 2))−M(n+2)
(

log(n+ 2)
)−M(n+2)

,

c(n) =
c

(M(n+ 1))2M log2M (n+ 1)
,

Nn = (2M)M (n+ 1)M logM (n+ 1),

δn = M2−N
1/M
n = M(n+ 1)−2M(n+1).

The proof is verbatim the same as that of Proposition 2.5.

2.4. Sets of fractional Minkowski dimension

We now turn to an analogous lemma for the case when the set of directions has non-negative
upper Minkowski dimension. Recall that the upper Minkowski dimension of a set Ω ⊂ R is
defined as the infimum of exponents d such that for any 0 < δ � 1 the set E can be covered
by O(δ−d) intervals of length δ.

Lemma 2.7. Let Ω ⊂ (0, π/2) be a set of upper Minkowski dimension d < 1. Then, for each
ε > 0, there exists α ∈ R and a constant c > 0 such that for all γ ∈ Ω, all p ∈ Z, q ∈ Z+ we
have ∣∣∣∣tan(α− γ)− p

q

∣∣∣∣ > c q
− 2

(1−d)2
−ε
. (2.14)

The proof is again based on the approach described in §2.1. Fix t ∈ (d, 1) and denote a = 1
1−t .

We shall construct a system of nested intervals In with length |In| = ε12−2an+2
such that for

p ∈ Z, R(n) = 2a
n ≤ q < 2a

n+1
= R(n+ 1) we have, for all α ∈ In,

∣∣∣∣tan(α− θ)− p

q

∣∣∣∣ > c(n)
q2

,

where c(n) = c2−2an(a2−1). The lemma follows from this construction, since c(n) & q−2(a2−1)

for this range of q’s.
Initially, restrict the attention to α in (α0, π/2− α0), α0 > 0, so that α− θ stays away from
±π/2 and the derivative of tan(α− θ) is bounded above by some C > 0 in absolute value.

Assume In−1 is constructed and consider 2a
n ≤ q < 2a

n+1
. Now fix a number s so that

d < s < t. We cover Ω by at most Nn = Csδ
−s
n intervals of length δn = ε22−2an+2

. Inequality
(2.4) is obviously satisfied

2c(n)
22an

+ C(|In−1|+ δ) < 2−2an+1
=

1
R2(n+ 1)

, (2.15)
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if the constants c, ε1, ε2 are small enough.

Nn ·
(

2c(n)
22an

+ δn

)
≤ Csδ−sn

(
2c(n)
22an

+ δn

)
≤ Csδ−tn

(
2c(n)
22an

+ δn

)
= Cs

(
2cδ−tn 2−2an+2

+ δ1−t
n

)
= Cs

(
2cε−t2 22an+2t2−2an+2

+ ε1−t
2 2−2an+1

)
= Cs2−2an+1 (

2cε−t2 + ε1−t
2

)
<

1
2
ε12−2an+1

=
1
2
|In−1|,

if ε2 and c are small (notice that a(1− t) = 1). Then |In−1| −Nn ·
(

2c(n)
22an + δn

)
≥ 1

2 |In−1| and

(Csδ−s + 1)|In| . 22an+2s2−2an+2
= 2−2an+2(1−s) = 2−2an+1( 1−s

1−t ) ≈ |In−1|
1−s
1−t . (2.16)

Since 1−s
1−t > 1, we conclude that (Csδ−s + 1)|In| < 1

2 |In−1| for n large enough. Thus (2.5) holds
and the proof is finished.

3. One-dimensional discrepancy estimates

Denote by ‖θ‖ the distance from θ to the nearest integer. We say that a real number θ is of
type < ψ for some non-decreasing function ψ on R+ if for all natural q we have q‖qθ‖ > 1/ψ(q),
in other words for all p ∈ Z, q ∈ N we have∣∣∣∣θ − p

q

∣∣∣∣ > 1
q2 · ψ(q)

. (3.1)

In particular, our results in the previous section imply that the numbers tan(α− γ) are of type
< ψ with

– ψ(q) = C log2 q in the lacunary case,
– ψ(q) = C log2M q in the “lacunary of order M” case,
– ψ(q) = C q

2
(1−d)2

−2+ε in the case of upper Minkowski dimension d.
For a sequence ω = {ωn}∞n=1 ⊂ [0, 1] its discrepancy is defined as

DN (ω) = sup
x∈[0,1]

∣∣∣∣#{{ω1, ..., ωN} ∩ [0, x)
}
−Nx

∣∣∣∣ (3.2)

The Erdös-Turan inequality (in a simplified form) says that, for any sequence ω ⊂ [0, 1]

DN (ω) .
N

m
+

m∑
h=1

1
h

∣∣∣∣∣
N∑
n=1

e2πihωn

∣∣∣∣∣ (3.3)

for all natural numbers m. It is particularly convenient to apply it to the sequence of the form
{nθ}, since in this case∣∣∣∣∣

N∑
n=1

e2πihnθ

∣∣∣∣∣ ≤ 2
|e2πihθ − 1|

=
1

| sin(πhθ)|
=

1
sin(π‖hθ‖)

≤ 1
2‖hθ‖

,

since sin(πx) ≥ 2x for x ∈ [0, 1/2]. Thus, we obtain

DN ({nθ}) . N

m
+

m∑
h=1

1
h‖hθ‖

. (3.4)
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If the number θ is of type < ψ, then the last sum above can be estimated as follows (see e.g.,
Exercise 3.12, page 131, [10])

m∑
h=1

1
h‖hθ‖

. log2m+ ψ(m) +
m∑
h=1

ψ(h)
h

. (3.5)

Remark. The proof of the estimate above is somewhat delicate; a more straightforward
summation by parts argument (Lemma 3.3, page 123, [10]) would have given

m∑
h=1

1
h‖hθ‖

. ψ(2m) logm+
m∑
h=1

ψ(2h) log h
h

. (3.6)

However, in the case of lacunary directions, this inequality would have given us a weaker bound.
It is interesting to note that in the case ψ = const, i.e. θ is badly approximable, both estimates,
(3.5) and (3.6), only yield log2N as opposed to the sharp log1N .

– The case ψ(q) = C log2 q. We have
m∑
h=1

1
h‖hθ‖

. log2m+
m∑
h=1

log2 h

h
≈ log3m,

while (3.6) would only have given log4m. Thus, for the discrepancy, inequality (3.4) with
m ≈ N yields

DN ({nθ}) . log3N. (3.7)

– More generally, in the case ψ(q) = C log2M q, we obtain

DN ({nθ}) . log2M+1N. (3.8)

– The case ψ(q) = C q
2

(1−d)2
−2+ε. Denote τ = 2

(1−d)2 − 2 + ε. From (3.5) we get

m∑
h=1

1
h‖hθ‖

. mτ +
m∑
h=1

hτ−1 ≈ mτ .

Inequality (3.4) with m ≈ N
1
τ+1 shows that the discrepancy satisfies

DN ({nθ}) . N
τ
τ+1 . (3.9)

4. Discrepancy with respect to rotated rectangles

In the present section we demonstrate how one can translate the one-dimensional discrepancy
estimates into the estimates for DΩ(N). These ideas are classical and go back to Roth [12].
The exposition of this and the next sections essentially follows the papers of Beck and Chen
[5] and Chen and Travaglini [7].

The examples providing the upper bounds will be obtained using a rotation of the lattice
(N−1/2Z)2. However, for technical reasons, it will be easier to rotate the unit square and the
rectangles instead and leave the lattice intact. In addition, we shall consider a rescaled version
of the problem.

Assume Ω is as described in parts 1,2, or 3 of Theorem 1.1. Let α be the angle provided by
Lemma 2.4, 2.6, or 2.7, respectively. Denote by V the square [0, N1/2) rotated counterclockwise
by α, and by AΩ,α the family of all rectangles R ⊂ V which have a side that is either parallel
to a side of V or makes angle θ − α with the x-axis for some θ ∈ Ω . (Strictly speaking,
we should have applied Lemma 2.4, 2.6, or 2.7 to the set Ω ∪ {0} ∪ (Ω + π/2) ∪ {π/2}. It
is easy to see that this change does not alter the proof.) For R ⊂ V , consider the quantity
D(R) = #{Z2 ∩R} − |R|. We have the following lemma:
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Lemma 4.1.
1) Let Ω be a lacunary sequence. For any R ∈ AΩ,α we have

D(R) . log3N. (4.1)

2) Let Ω be a lacunary set of order M . For any R ∈ AΩ,α we have

D(R) . log2M+1N. (4.2)

3) Assume Ω has upper Minkowski dimension 0 < d < 1. In this case, for each R ∈ AΩ,α,

DΩ(N) . N
τ

2(τ+1) +ε, (4.3)

for any ε > 0, where τ = 2
(1−d)2 − 2.

We first show that the lemma above implies our main theorem.
Proof of Theorem 1.1. Denote by Pα the intersection of the lattice (N−1/2Z)2 rotated by α

and [0, 1]2. The only obstacle to proving the theorem is the fact that Pα does not necessarily
contain precisely N points. Let P ′α be a set of N points obtained from Pα by arbitrarily adding
or removing |#Pα −N | points. Let F (N) stand for the right-hand side of the inequality we are
proving ((1.6), (1.7), or (1.8)). “Unscaling” the estimates of Lemma 4.1 and taking R = [0, 1]2,
we obtain

|#Pα −N | . F (N).

Then, for any R ∈ AΩ we have, again using Lemma 4.1∣∣∣∣#P ′α ∩R−N |R|∣∣∣∣ ≤ ∣∣∣∣#Pα ∩R−N |R|∣∣∣∣+
∣∣∣∣#Pα ∩R−#P ′α ∩R

∣∣∣∣
. F (N) + |#Pα −N | . F (N),

which finishes the proof. �
Remark. In view, of inequality (1.5), for any Ω we have the bound DΩ(N) . N1/4 log1/2N .

Thus, the bound arising from (1.8) is meaningful only if 1
2 −

1
2(1+τ) <

1
4 , i.e. τ < 1. So, in the

context of rotated rectangles, this estimate is interesting only if the set of rotations has low
Minkowski dimension:

d < 1−
(

2
3

) 1
2

≈ 0.1835.... (4.4)

We now prove Lemma 4.1. For each point n = (n1, n2) ∈ Z2, consider a square of area one
centered around it

S(n) =
[
n1 −

1
2
, n1 +

1
2

)
×
[
n2 −

1
2
, n2 +

1
2

)
.

Obviously, we can write:

D(R) =
∑
n∈Z2

D(R ∩ S(n)).

Denote the sides of R by T1, T2, T3, T4. Set

N− = {n : S(n) ∩ Ti = ∅, for all i = 1, 2, 3, 4},

i.e. the set of those n for which the corresponding square lies entirely within or entirely outside
R – for such squares D(R ∩ S(n)) = 0.

Also, take

N+ = {n : S(n) ∩ Ti 6= ∅, S(n) ∩ Ti+1 6= ∅, for some i = 1, 2, 3, 4},

(the addition is mod 4) to be those n for which S(n) contains a corner of R. We have #N+ ≤ 4
and |D(R ∩ S(n))| ≤ 1, thus

∑
n∈N+ D(R ∩ S(n)) ≤ 4.
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Finally, for i = 1, 2, 3, 4, set

N i = {n : S(n) ∩ Ti 6= ∅, but n 6∈ N+},
to be the centers of those squares which intersect the side Ti but do not contain any corners.
The collections N i are not necessarily disjoint, e.g., when R is a thin rectangle. However, we
have the following useful fact:

Proposition 4.2. Let R be a convex polygon with sides T1,...,Tm. Denote by T ∗j the
halfplane with boundary Tj which contains R. Assume the square S(n) intersects R but does
not contain any vertices of R. Let Tj1 , ... , Tjk be the sides of R that intersect S(n). Then

D(R ∩ S(n)) =
k∑
i=1

D(T ∗ji ∩ S(n)). (4.5)

We use the fact that discrepancy is an additive measure and that D(S(n)) = 0. Then

0 = D(S(n)) =
k∑
i=1

(
D(S(n))−D(T ∗ji ∩ S(n))

)
+D(R ∩ S(n)). �

Since Z2 = N− ∪N+ ∪N 1 ∪ ... ∪N 4, it remains to estimate the terms
∑

n∈N j D(T ∗j ∩
S(n)). Assume that the jth side of R lies on the line tanφ = y2−a2

y1−a1
, i.e.

y2 = a2 + (y1 − a1) tanφ

for some constants a1, a2 and φ = α− θ or φ = α− θ + π/2. Let Ij = {n1 ∈ Z : (n1, n2) ∈
N j for some n2 ∈ Z} be the projection of the N j onto the x-axis. Fix n ∈ Ij and let h ∈ Z be
the smallest number such that (n, h) ∈ N j . Then it is easy to see that (here we assume that
R is below Tj , the other case is analogous)∑

n∈N j , n2=n

#{Z2 ∩ T ∗j ∩ S(n)} = [y2(n1)− h+ 1], (4.6)

and the area of the trapezoid is∑
n∈N j , n2=n

|T ∗j ∩ S(n)| = y2(n1)− h+
1
2
. (4.7)

(This relation may fail when n is an endpoint of Ij , but this gives us a bounded error.) Thus,
the discrepancy can be described by the “sawtooth” function, ψ(x) = x− [x]− 1

2 = {x} − 1
2 ,∑

n∈N j
D(T ∗j ∩ S(n)) = ±

∑
n∈Ij

ψ(c− n tanφ). (4.8)

The “sawtooth” function arises naturally in one dimensional discrepancy. If we define, for a
sequence ω,

DN (ω, x) =
∣∣∣∣#{{ω1, ..., ωN} ∩ [0, x)

}
−Nx

∣∣∣∣,
one can easily check that

DN (ω, x) =
N∑
n=1

(
ψ(ωn − x)− ψ(ωn)

)
. (4.9)

Since x ∈ [0, 1] is arbitrary, it is possible to show that for all x ∈ [0, 1]∣∣∣∣∣∑
n=1

ψ(ωn − x)

∣∣∣∣∣ . DN (ω). (4.10)
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Indeed, one can find a point x ∈ [0, 1] with DN (ω, x) =
∑N
n=1 ψ(ωn) (see, e.g., the

proof of Erdös-Turan in [10]), thus
∣∣∣∑N

n=1 ψ(ωn)
∣∣∣ ≤ DN (ω), but then for any x ∈ [0, 1],

|
∑
n=1 ψ(ωn − x)| ≤ 2DN (ω). Thus, (4.8) and (4.10) imply∣∣∣∣∣ ∑

n∈N j
D(R ∩ S(n))

∣∣∣∣∣ . D|Ij |(ω). (4.11)

Obviously, |Ij | . N
1
2 . This fact, together with inequality (4.11) and the results of the

previous section, proves the lemma. �
To conclude this section, we formulate analogous results on the discrepancy with respect to

convex polygons. We omit the proofs as they are verbatim the same as the proof of the main
theorem.

Let Ω be a set of directions. Denote by BΩ,k the collection of all convex polygons in [0, 1]2

with at most k sides whose normals belong to ±Ω and set

DΩ,k(N) = inf
PN : #PN=N

sup
B∈BΩ,k

∣∣∣∣#PN ∩B −N · |B|∣∣∣∣.
The following theorem holds (notice that the implied constants depend on k):

Theorem 4.3.
1) Let Ω be a finite union of lacunary sets of order at most M ≥ 1. Then we have

DΩ,k(N) .k log2M+1N. (4.12)

2) Assume Ω has upper Minkowski dimension 0 < d < 1. In this case,

DΩ,k(N) .k N
τ

2(τ+1) +ε, (4.13)

for any ε > 0, where τ = 2
(1−d)2 − 2.

5. An upper bound for the L2 discrepancy

We now prove Theorem 1.2. In this case, the point set with low L2 discrepancy is given by
a suitably shifted rotation of the lattice (N−1/2Z)2; the idea of using random shifts to obtain
distributions with low average discrepancy was first introduced by Roth [13]. As in the previous
section we consider a rescaled and rotated version of the problem, that is we set V to be the
square[0, N1/2]2 rotated counterclockwise by the angle α given by the Lemma 2.4, 2.6, or 2.7.
Assume AΩ,α is the family of all rectangles R ⊂ V which have a side that is either parallel to
a side of V or makes angle θ − α with the x-axis for some θ ∈ Ω and fix a rectangle R ∈ AΩ,α.

For any ω ∈ [0, 1]2 define the shift of the integer lattice Z2
ω = ω + Z2. Consider the

quantity Dω(R) = D(Z2
ω, R) = #{Z2

ω ∩R} − |R|. We estimate the mean square of the shifted
discrepancies in the following lemma:

Lemma 5.1.
1) Let Ω be a lacunary set of order M ≥ 1. For any R ∈ AΩ,α, we have∫

[0,1]2
| D(Z2

ω, R) |2 dω . log4M+1N (5.1)

2) Let Ω be a set of upper Minkowski dimension d < 1. For any R ∈ AΩ,α, we have∫
[0,1]2

| D(Z2
ω, R) |2 dω . N

τ
τ+1 +ε, (5.2)
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for any ε > 0, where τ = 2
(1−d)2 − 2 and τ < 1.

The lemma relies on the following important calculation which goes back to Davenport [8]
(see also Beck and Chen [5]). Recall that ‖ x ‖= minn∈Z | x− n | denotes the distance from x
to the nearest integer. We have

Lemma 5.2. Let I be a finite interval of consecutive integers.
1) Assume tanφ satisfies ν‖ν tanφ‖ > c

log2M ν
, for all ν ∈ N . Then

∞∑
ν=1

1
ν2

∣∣∣∣∣∑
n∈I

e−2πiνn tanφ

∣∣∣∣∣
2

. log4M+1 |I|. (5.3)

2) Assume tanφ satisfies ν‖ν tanφ‖ > cν−τ+ε, for all ε > 0, where 0 ≤ τ < 1. Then

∞∑
ν=1

1
ν2

∣∣∣∣∣∑
n∈I

e−2πiνn tanφ

∣∣∣∣∣
2

. |I|
2τ
τ+1 +ε′

, where ε′ = O(ε). (5.4)

Proof. We will use a simple fact that∣∣∣∣∣∑
n∈I

e−2πiνn tanφ

∣∣∣∣∣ . min{|I|, ‖ ν tanφ ‖−1}.

We deal with part one first:

S =
∞∑
ν=1

1
ν2

∣∣∣∣∣∑
n∈I

e−2πiνn tanφ

∣∣∣∣∣
2

.
∞∑
h=1

2−2h
∑

2h−1≤ν<2h

min{|I|2, ‖ ν tanφ ‖−2}.

Notice that our assumption on tanφ implies that if 2h−1 ≤ ν < 2h, then ‖ ν tanφ ‖> c
2hh2M . On

the other hand, for any pair h, p ∈ N, there are at most two values of ν satisfying 2h−1 ≤ ν < 2h

and p c
2hh2M ≤‖ ν tanφ ‖< (p+ 1) c

2hh2M . Indeed, otherwise the difference (ν1 − ν2) of two of
them would contradict the assumption. We have

S .
∞∑
h=1

∞∑
p=1

min{2−2h|I|2, p−2h4M}

=
∑

2h≤|I|

∞∑
p=1

min{2−2h|I|2, p−2h4M}+
∑

2h>|I|

∞∑
p=1

min{2−2h|I|2, p−2h4M}

.
∑

2h≤|I|

∞∑
p=1

p−2h4M +
∑

2h>|I|

2−2h|I|22h|I|−1h2M +
∑

p>2hh2M |I|−1

h4Mp−2


.
∑

2h≤|I|

h4M +
∑

2h>|I|

2−h|I|h2M

. log4M+1 | I | .

Part 2 is proved in a similar fashion. The choice of φ yields that, for 2h−1 ≤ ν < 2h, we have
‖ ν tanφ ‖> c2h(−1−τ−ε). And as before, for any pair h, p ∈ N, no more than two values of ν
satisfy 2h−1 ≤ ν < 2h and pc2h(−1−τ−ε) ≤‖ ν tanφ ‖< (p+ 1)c2h(−1−τ−ε). Thus



Page 14 of 16 DMITRIY BILYK, XIAOMIN MA, JILL PIPHER, CRAIG SPENCER

S .
∞∑
h=1

∞∑
p=1

min{2−2h|I|2, p−222h(τ+ε)}

=
∑

2h(1+τ)≤|I|

∞∑
p=1

min{2−2h|I|2, p−222h(τ+ε)}+
∑

2h(1+τ)>|I|

∞∑
p=1

min{2−2h|I|2, p−222h(τ+ε)}

.
∑

2h(1+τ)≤|I|

∞∑
p=1

p−222h(τ+ε) +
∑

2h(1+τ)>|I|

2−2h|I|22h(1+τ+ε) | I |−1 +
∑

p>2h(1+τ+ε)|I|−1

p−222h(τ+ε)


.

∑
2h(1+τ)≤|I|

22h(τ+ε) +
∑

2h(1+τ)>|I|

2h(−1+τ+ε)|I|

. | I |
2τ

1+τ +ε′ ,

where τ < 1 is required for the second sum in the penultimate line above to converge for any
choice of ε > 0.

We turn to the proof of Lemma 5.1. For any n = (n1, n2) ∈ Z2, ω = (ω1, ω2) ∈ [0, 1]2, define

S(n, ω) = [n1 + ω1 − 1/2, n1 + ω1 + 1/2)× [n2 + ω2 − 1/2, n2 + ω2 + 1/2).

Also define N+ = {n : ∃ω′ ∈ [0, 1]2 such that S(n, ω′) contains a vertex of R }, and

N = {n : ∃ω′ ∈ [0, 1]2 such that S(n, ω′) ∩R 6= ∅, and
∀ω ∈ [0, 1]2, S(n, ω) contains no vertex of R }.

Let Ñ = N+ ∪N−. Then one can see that Dω(R) =
∑

n∈ eN Dω(R ∩ S(n, ω)). Obviously,
#N+ = O(1) and it remains to deal with N . Write N = N 1 ∪ ... ∪N 4 in a natural way. Using
Proposition 4.2, we can rewrite the discrepancy∑

n∈N
Dω(R ∩ S(n, ω)) =

4∑
j=1

∑
n∈N j

Dω(S(n, ω) ∩ T ∗j ) (5.5)

where T ∗j is the halfplane defined by the jth side of R (see Proposition 4.2).
For each j = 1, ..., 4, define Ij = {n1 ∈ Z : ∃n2 such that (n1, n2) ∈ N j}. Applying the argu-

ment, similar to the one preceding (4.8), we express the discrepancy arising from the jth side
in terms of the “sawtooth” function ψ(x), up to a bounded error:∑

n∈N j
Dω(S(n, ω) ∩ T ∗j ) = ±

∑
n1∈Ij

ψ(a2 − ω2 + (n1 − a1 + ω1) tanφ) (5.6)

The “sawtooth” function ψ(x) has the Fourier expansion −
∑
ν 6=0

e(2πiνx)

2πiν . Hence, using
Parseval’s theorem, one easily obtains∫

[0,1]2

∣∣∣∣∣ ∑
n∈N j

Dω(S(n, ω) ∩ T ∗j )

∣∣∣∣∣
2

dω .
∞∑
ν=1

1
ν2

∣∣∣∣∣∣
∑
n∈Ij

e−2πiνn tanφ

∣∣∣∣∣∣
2

. (5.7)

By applying Lemma 5.2 and the fact that, for each j, we have | Ij |= O(N1/2), we finish the
proof of Lemma 5.1.

We are now ready to prove Theorem 1.2. Let µ be any probability measure on A′Ω and
consider the induced probability measure µ′ on the set AΩ,α of rectangles R ⊂ V (see the
beginning of this section). Since, by Lemma 5.1,∫

[0,1]2
| D(Z2

ω, R) |2 dω . F (N),
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(where F (N) denotes the right-hand side of (5.1) or (5.2), respectively), it follows that there
exist ω0 ∈ [0, 1]2 such that ∫

AΩ,α

| D(Z2
ω0
, R) |2 dµ′(R) . F (N).

The only obstacle to finishing the proof is the fact that Z2
ω0
∩ V does not necessarily contain

precisely N points. However, this can be handled as explained in the proof of Theorem 1.1.
Remark 1. Part 2 of Lemma 5.1 required that τ < 1, which yields the same restriction

d < 1− (2/3)1/2 ≈ 0.1835..... that arises in the L∞ case, (4.4), for a different reason.
Remark 2. Often, when considering L2 averages, it is more convenient, instead of imposing

the condition R ⊂ [0, 1]2, to deal with all rectangles R ∈ AΩ with diam(R) ≤ 1, while treating
[0, 1]2 as a torus. In this case, the proof of Theorem 1.2 presented above undergoes only minor
changes: modulo V , any rectangle R with diam(R) ≤ N1/2 can be represented as at most 4
polygons contained in V , having at most 6 sides each.

Remark 3. It is easy to see that the same argument also applies to convex polygons with a
bounded number of sides. Thus we also have the following theorem.

Let, as before, BΩ,k denote the collection of all convex polygons in [0, 1]2 with at most k
sides whose normals belong to ±Ω and set, for P ⊂ [0, 1]2 with #P = N and for B ∈ BΩ,k,

DΩ,k(P, B) =
∣∣∣∣#P ∩B −N · |B|∣∣∣∣.

Theorem 5.3. Let σ be any probability measure on BΩ,k

1) Let Ω be a finite union of lacunary sets of order at most M ≥ 1. Then there exists
P ⊂ [0, 1]2 with #P = N such that(∫

BΩ,k

|DΩ,k(P, B)|2 dσ(B)

) 1
2

.k log2M+ 1
2 N. (5.8)

2) Assume Ω has upper Minkowski dimension 0 ≤ d < 1. In this case, there exists P ⊂ [0, 1]2

with #P = N such that(∫
BΩ,k

|DΩ,k(P, B)|2 dσ(B)

) 1
2

.k N
τ

2(τ+1) +ε, (5.9)

for any ε > 0, where τ = 2
(1−d)2 − 2 satisfies τ < 1.
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2. Beck, József, ‘Irregularities of distribution I’, Acta Math., 159 (1987) 1–49.
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15. Sjöngren, P. and Sjölin, P., ‘Littlewood-Paley decompositions and Fourier multipliers with singularities

on certain sets’, Annales de l’Institut Fourier, 31, no. 1 (1981) 157-175.

Dmitriy Bilyk
Department of Mathematics,
University of South Carolina,
Columbia SC 29208 USA

bilyk@math.sc.edu

Xiaomin Ma
Mathematics Department,
Brown University,
Providence RI 02912 USA

xiaomin@math.brown.edu

Jill Pipher
Mathematics Department,
Brown University,
Providence RI 02912 USA

jpipher@math.brown.edu

Craig Spencer
Department of Mathematics,
Kansas State University,
Manhattan KS 66506 USA

cvs@math.ksu.edu


