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One of the objectives of this note is to revive interest in a collection of problems in
differentiation theory related to a conjecture of Zygmund. We shall also give another
proof of the sharp mapping properties near L1 of the strong maximal operator by proving
a covering lemma which is in the spirit of [2].

The classical operators of harmonic analysis which are important in various fields of
analysis and PDE include singular integrals, maximal functions, Hilbert and Riesz trans-
forms and other operators defined by multipliers. Some of these operators are invariant
under the usual dilation group of R

n; others, like the multiple Hilbert transform, are
invariant under the product dilations, but there are others which transform in such a way
as to be invariant under some other group of dilations.

In IRn, the product dilations have the form

ρδ1,δ2,...,δn
(x1, ...xn) = (δ1x1, δ2x2, ..., δnxn).

The mapping properties of operators invariant under this group of dilations on Lp in
the range 1 < p < ∞ typically follow from the one parameter theory via iterative or
vector valued methods. The differences between the product dilation case and the usual
dilation case is most apparent in the sharp estimates near L1. For example, consider the
usual Hardy Littlewood maximal operator in IRn:

Mf(x) = sup
x∈Q

1

|Q|

∫

Q

fdx

where the sup is taken over cubes in IRn with sides parellel to the axes. The product
dilation version of this operator is the strong maximal operator in IRn:

Mnf(x) = sup
x∈R

1

|R|

∫

R

fdx

where R is a rectangle with sides parallel to the axes. On the one hand, Mf satisfies the
familiar weak type inequality near L1 :

|{x : Mf(x) > λ}| < C
||f ||L1

λ
, (1)

whereas Mnf satisfies

|{x : Mnf(x) > λ}| < C

∫
f

λ
(1 + log+(

f

λ
)n−1dx. (2)

The product dilation group however is only one example of a multiparameter dilation
group. (For a very general point of view, see [5].) Consider, for example, the dilations
(x1, x2, x3) 7→ (δ1x1, δ2x2, δ1δ2x3) in IR3 and the multipliers m which are invariant under
these dilations. Then, viewing operators Tm associated to these multipliers as three
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parameter product operators, one can see that that these Tm are bounded on Lp(IR3)
in the range 1 < p < ∞. This fact is related to the following. If one forms a maximal
function Ms,t by averaging over rectangles in IR3 with sidelengths s × t × st, then Ms,t is
clearly dominated by M3,the strong maximal function in IR3. However, it turns out that
the maximal function Ms,t associated to this dilation structure behaves more like M2, the
two-dimensional strong maximal function. This was demonstrated by A. Cordoba [2] who
showed that, for Q the unit cube,

|{(x1, x2, x3) ∈ Q : Ms,tf(x1, x2, x3) > λ}| ≤
C

λ
||f ||LLog+(Q). (3)

That is, near L1, Ms,t and M2 have the same mapping properties. (E. Stein has ob-
served that the properties of this type of maximal operator are related to boundary value
problems for Poisson integrals on symmetric spaces. In [4], the behavior near L1 of sin-
gular integral operators associated to multipliers invariant under this dilation group was
studied.)

There are several interesting features of this result, and its proof. First, the weak type
inequality for the maximal function is established by means of a covering lemma. Second,
the proof has not been generalized to higher dimensions. There are, of course, many
possible higher dimensional analogs of this results, but even the most straightforward
of these remains elusive. Third, the result gave support to a conjecture of Zygmund
regarding the concept of a k parameter family of dilation invariant operators in IRn.
Zygmund had conjectured that if the rectangles in IRn had n side lengths which involved
only k independent variables, then the resulting maximal operator should behave like
Mk, the k parameter strong maximal operator. F. Soria showed in [6] that the question
required more assumptions than Zygmund had suppposed. However, it seems natural to
conjecture that some modified version of Zygmund’s conjecture should hold - one that
includes, say, the dilation family (δ1, ...δn−1, δ1δ2...δn−1). Finally, we note that estimates
in Orlicz spaces are more delicate as they cannot be obtained by iteration.

Here is the idea behind Cordoba’s result. Consider a finite family of rectangles {Ri}
in IR3, sides parallel to the axes, whose side lengths are of the form s × t × st. Order the
rectangles according to the size of the third side: s1t1 > s2t2 > ... > sN tN . If one can
choose a subsequence of these rectangles, denoted {R̃i} which satisfies:

(i) |
⋃

Ri| ≤ 10|
⋃

R̃i|

(ii)
∫

S
R̃i

exp(
∑

i χR̃i
)dxdydz ≤ C|

⋃
R̃i|

then the weak type inequality for LLogL functions holds. To achieve (i) and (ii), Cordoba
chooses an Ri to be in the subsequence if

∫

Ri

exp(
∑

k<i

χR̃k
)dxdydz ≤ c|Ri|.

It is now straightforward to verify that inequality (ii) holds if c is chosen appropriately,
but it is trickier to see that the union of rectangles not chosen has small volume.
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To see this, let Ri be a rectangle not satisfying the selection criterion, i.e., the above
inequality fails. From the ordering of the third sides, we see that we can slice away one
dimension and that we have

∫

R′

i

exp(
∑

k<i

χR̃′

k

(x, y, z))dxdy ≥ c|R′
i| (4)

for all z in R′
i, and where R′

i = Ii × Ji is the two dimensional rectangle of side lengths
si × ti. If k < i, the rectangles R′

k split into two classes - those for which sk > si and
those for which tk > ti. This is forced by the condition sktk > siti. If one assumes that all
the side lengths are dyadic (with no loss of generality), then sk > si entails the geometric
condition that Ii ⊂ Ik. Let’s say k ∈ Ai if sk > si and that k ∈ Bi if tk > ti. Then,

∫

R′

i

exp(
∑

k<i

χR̃′

k

(x, y))dxdy =

∫

R′

i

exp(
∑

k∈Ai

χR̃′

k

(y))exp(
∑

k∈Bi

χR̃′

k

(x))dxdy, (5)

which splits into a product of two one dimensional integrals. One can now argue that
each Ri not chosen must be contained in

{(x, y, z) : M1(exp(
∑

k

χR̃′

k

(x, y, z))) × M2(exp(
∑

k

χR̃′

k

(x, y, z))) > c′}

where M1 and M2 are one-dimensional maximal operators in the variables x and y. By
the weak type 1-1 result (1), the set above has measure bounded by a constant times

∫
S

Ri

exp(
∑

k

χR̃k
)dxdydz.

By the inequality in (ii), we see that the volume of the rectangles discarded by the selection

procedure is bounded by C|
⋃

R̃i|.
This argument fails in higher dimensions, apparently for two reasons. First, the splitting

of the exponential of the sum into a product of one variable (or lower dimensional) integrals
fails. Second, the weak type L1 estimate for the one dimensional maximal operator was
used at a crucial point to estimate the volume of the discarded rectangles. In higher
dimensions, the weak type estimate involves estimates in L(LogL)k.

One of the main technical contributions of this note is to show that the second apparent
obstacle above can be overcome.

To see this, we shall prove a covering lemma for rectangles in IRn, in the spirit of Cor-
doba’s argument, by selecting those rectangles which satisfy the appropriate exponential
estimate. The lemma falls short of proving the conjectured weak type estimates for, say,
the three parameter maximal operator defined by the dilation structure s × t × u × stu,
but it will give new covering lemmas for other families of rectangles.

Let {Ri} an arbitrary family of (dyadic) rectangles in IRn with sides parallel to the
axes, and ordered according to decreasing length of one of the sides. To be definite, let
Ri = R′

i × In and order according to decreasing size of In. Choose a subcollection R̃i

according to the rule:
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∫

Ri

exp(
∑

k<i

χR̃k
)1/n−1dx1...dxn ≤ c|Ri|. (6)

Then, we claim that

(i) |
⋃

Ri| ≤ 10|
⋃

R̃i|

(ii)

∫
S

R̃i

(
∑

i

χR̃i
)(n−2)/(n−1)exp(

∑

i

χR̃i
)1/(n−1)dx1...dxn ≤ C|

⋃
R̃i|

Notice that the estimate in (ii) contains an apparent improvement over what can be
deduced automatically from the selection procedure. The exponent in (ii) is sharp - a
larger exponent would imply an even better (and false) covering property of the standard
family of n-parameter rectangles.

Assuming condition (ii) holds, it is easy to prove (i). Suppose Ri was not chosen. Then
∫

R′

i

exp((
∑

k<i

χR̃′

k

))1/n−1)dx1...dxn−1 > c|R′
i|.

All the rectangles which contribute to this sum have sides Ii which must contain In, so
we’ve “sliced away” one dimension in this integral. Thus the collection of rectangles not
chosen is contained in the set

{(x1, ...xn) : Mn−1(exp(
∑

k

χR̃k
(x))1/(n−1)) > c}

Arguing inductively, since Mn−1 maps L(LogL)n−2 into weak L1, the measure of this set
is bounded by the integral in condition (ii). It remains to prove (ii). Consider the integral

∫
S

R̃i

(
∑

i

χR̃i
)(n−2)/(n−1)exp(

∑

i

χR̃i
)1/(n−1) =

∞∑

p=0

1

p!

∫
S

R̃i

(
∑

i

χR̃i
)(p+n−2)/(n−1).

For p = l(n − 1) + h, with h = 1, 2, ...n − 1, we have a family of estimates to prove. We

first prove it for p = l(n − 1) + 1, and then sketch the argument that the other estimates
follow from this. That is, we shall first prove the following inequality.

∞∑

l=0

1

(l(n − 1) + 1)!

∫
S

R̃i

(
∑

i

χR̃i
)l+1 ≤ C|

⋃
R̃i|. (7)

Let cm(j) denote

∫

Rm

(
∑

i<m

χR̃i
)j/(n−1). The selection assumption is equivalent to the con-

dition that
1

|Rm|

∑

j

cm(j)

j!
≤ c, for all m. Fixing l for the moment, consider

∫
S

R̃i

(
∑

i

χR̃i
)l+1 =

∫
S

R̃i

∑

(l+1)−tuples

χRi1
χRi2

χRi
l+1

.
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The sum over all (l + 1)− tuples of Ri’s can be subdivided into a sum over all (l + 1)−
tuples such that m is the largest index and such that χRm

occurs k times in the sum.

There are C(l + 1, k) = (l+1)(l)...(l+1−k+1)
k!

slots in which Rm may occur. Therefore the
above sum is bounded by

∫ ∑

m

l+1∑

k=1

C(l + 1, k)χk
Rm

∑

(i1,...il+1−k),i<m

χRi1
...χRi

l+1−k

=
∑

m

l+1∑

k=1

C(l + 1, k)

∫

Rm

(
∑

i<m

χRi
)l+1−k.

Hence, the sum in (7) is bounded by the expression

∑

l

∑

m

1/(l(n − 1) + 1)!

l+1∑

k=1

C(l + 1, k)cm((n − 1)(l + 1 − k))

≤
∑

m

∞∑

k=1

∑

l≥k−1

1/(l(n − 1) + 1)!C(l + 1, k)cm((n − 1)(l + 1 − k)).

Set q = l + 1 − k. The sum above is the same as

∑

m

∞∑

q=0

cm((n − 1)q)

q(n − 1)!

∞∑

k=1

(q(n − 1))!

((q + k − 1)(n − 1) + 1)!
C(q + k, k).

This is bounded by a constant times
∑

m |Rm| because

∞∑

k=1

(q(n − 1))!

((q + k − 1)(n − 1) + 1)!
C(q + k, k) ≤ C,

as a straightforward computation verifies. In fact, the kth term in the sum is bounded,
when n ≥ 2. by 1/k!.

We now sketch the argument that it suffices to prove the estimate (ii) for the exponent
p = l(n−1)+1. Let’s just look at the three dimensional situation for simplicity. Suppose
we have shown that

∞∑

p=0

1

p!

∫
S

R̃i

(
∑

i

χR̃i
)(p+1)/2, (8)

when p = (2k + 1).
That same sum, with p = 2k, is sandwiched in between two sums with even terms.

That is,

∞∑

k=0

1

(2k)!

∫
S

R̃i

(
∑

i

χR̃i
)(2k+1)/2

≤

∞∑

k=0

1

(2k)!
(

∫
S

R̃i

(
∑

i

χR̃i
)k)1/2(

∫
S

R̃i

(
∑

i

χR̃i
)k+1)1/2



6 ROBERT FEFFERMAN AND JILL PIPHER

We multiply the k-th term integrals above by 1/(2k − 1)! and 1/(2k + 1)! respectively,
and the result is bounded by

∞∑

k=0

√
2k + 1

2k
(

1

(2k − 1)!

∫
S

R̃i

(
∑

i

χR̃i
)k)1/2(

1

(2k + 1)!

∫
S

R̃i

(
∑

i

χR̃i
)k+1)1/2

and Cauchy-Schwarz shows that this is, in turn, bounded by (8). The n parameter situ-
ation requires a similar splitting, with different weights, and Holder’s inequality instead
of Cauchy-Schwarz. The arguments above yield the following general result.

Theorem 0.1. Let Ri be a collection of measurable sets in IRn. Take β ∈ (0, 1] (above

we took β = 1/(n − 1)). Select a subcollection R̃i according to the rule
∫

Rm

exp(
∑

i<m

χ eRi
(x))βdx ≤ c|Rm|.

Then, one has the improvement
∫
(
∑

i

χ eRi
(x))1−β exp(

∑

i

χ eRi
(x))βdx ≤ C

∑

m

|R̃m|.

When the Ri are intervals in R
n, further assumptions in the ordering will also give |∪Ri| ≤

C| ∪ R̃m|.

The two dimensional version of this covering lemma has the following stronger feature:
it is not necessary to order the rectangles by side length. It suffices to assume that the
rectangles do not satisfy any containment relations. The type of 4 dimensional maximal
operator that this particular covering lemma applies includes dilation structures such as
(δ1, δ2, δ3, δ1δ2). The remaining obstacle to a true generalization of Zygmund’s conjecture
is to find the appropriate replacement for the splitting of the two parameter integral into
a product of two one variable integrals.

Final remarks. It appears that the problem of understanding what makes a n dimensional
family of rectangles, and the associated family of SIO’s, a k paramenter family is a delicate
one. For example, in [So], the following phenomenon is noted. Consider the collection of
rectangles whose side lengths are s×1/s×t for positive s, t. This is not, strictly speaking,
a basis of rectangles. Nevertheless, it is interesting to observe that Cordoba’s argument
applies to the this collection, hence there exists an exponential covering lemma which
shows that a maximal operator associated to this collection is really a two parameter
operator. However, the two dimensional collection of rectangles of form s× 1/s is already
a two parameter family (as examples show). It thus appears that, to this two parameter
family, one may add an independent third side, and yet this does not result in a three
parameter family.

One way to think about this, and related, phenomena is to try to understand the action
of the associated maximal operator on a point mass. When can the geoemetric nature of
the operator be deduced from its action on the delta? This question is closely related to
the following issue. Take an n dimensional family of rectangles, like the ones we’ve been
considering. Form the subfamily of rectangles which all have a fixed volume, say volume
= 1. When can the action of the operator be understood in general by its restriction to
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the this subclass? An answer to this question could provide an inductive means of proving
higher dimensional results. For example, for the class s × t × st, the subclass is simply
rectangles of form s × 1/s × 1, a two parameter family. And for Soria’s class above, the
volume = 1 subclass also has the form s× 1/s× 1, which makes it perhaps less surprising
that Cordoba’s argument applies to this operator as well.

Acknowledgements. The referee made several helpful comments.
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