MATH 2050 ALGEBRAIC GEOMETRY PROBLEM SETS

Problem Set 1. Due Friday September 15 in class

- 1. Eisenbud-Harris exercises I-1, I-2, I-3 (graded for completion only)
- 2. Classify, with proof, the points of $\operatorname{Spec} \mathbb{C}[x, y]/(xy)$, and describe the closure of each point in the Zariski topology.
- 3. Do the same for Spec $(\mathbb{C}[x,y]/(xy))_{(x,y)}$.
- 4. Do the same for Spec $\mathbb{Z}[x]$ (see Eisenbud-Harris II-37, II-38).
- 5. Liu exercise 2.1.6.

Problem Set 2. Due Friday September 22 in class

1. Liu exercises 2.1.2, 2.1.3, 2.1.4, 2.2.1, 2.2.2. See online errata for 2.1.4(a): replace "nilpotent" with "nil ideal"

Problem Set 3. Due Friday September 29 in class

- 1. Eisenbud-Harris exercise I-20
- 2. Liu exercises 2.2.4, 2.2.8, 2.2.9, and either 2.2.6 or 2.2.13.

Problem Set 4. Due Friday October 6 in class

- 1. We studied a once-punctured plane $\mathbb{A}_k^2 \{(0,0)\}$ in class. Consider a *twice*-punctured plane. Is it isomorphic as a scheme to a once-punctured plane?
- 2. Verify that the disjoint union of finitely many affine schemes is an affine scheme.
- 3. Liu exercises 2.3.1, 2.3.14, 2.3.15.

Problem Set 5. Due Friday October 13 in class

- 1. Vakil exercises 9.2.A, 9.2.B, 9.2.F.
- 2. Eisenbud-Harris exercise I-46, just parts (d) through (g)
- 3. Liu exercises 2.3.7, 3.1.6, 3.1.8.

Problem Set 6. Due Friday October 20 in class

- 1. Eisenbud-Harris exercises II-11, II-12, and II-14. See discussion on pp. 60–61 of that book.
- 2. Liu exercises 2.4.1, 2.4.2 (see example 2.3.16), and 2.4.3.

Problem Set 7. Due Friday October 27 in class

- 1. Let $B = \operatorname{Spec} \mathbb{C}[t]$. Using a computer or otherwise, compute the limits of the following families of closed subschemes of \mathbb{A}^n_B as $t \to 0$, in the precise sense discussed. What are the primary components of the limiting scheme? Draw pictures.
 - (a) The plane curve $xy^2 = t$
 - (b) Three concurrent lines becoming coplanar: the three lines through the origin and (1,0,0), (0,1,0), (1,1,t) respectively
 - (c) Squashing a twisted cubic curve: the space curve whose closed points are (ts, s^2, s^3) for $t, s \in \mathbb{C}$.
- 2. Liu exercises 2.4.4, 2.4.9, 2.4.11, 2.5.3.

Problem Set 8. Due Friday November 3 in class

1. Liu exercises 2.3.10, 2.3.11, 2.3.18, 2.5.7, 3.1.5.

Problem Set 9. Due Friday November 10 in class

- 1. Vakil exercise 8.2.N (see 8.2.11)
- 2. Let d, n be positive integers, and let $N = \binom{n+d}{d} 1$. Prove that the image of the Veronese map $v_d(\mathbb{P}^n_{\mathbb{C}}) \subset \mathbb{P}^N_{\mathbb{C}}$ does not lie on any hyperplane (i.e. vanishing locus of a linear form) of \mathbb{P}^N .
- 3. (You may replace Gr(2, 4) with Gr(d, n) as you wish.)

Consider the Grassmannian variety Gr(2, 4) parametrizing 2-planes in \mathbb{C}^4 . For each 2-element subset I of $\{1, \ldots, 4\}$, consider all 2×4 matrices with reduced row echelon form having leading 1s in columns I.

- (a) Show that the row spans of such matrices form the closed points of a *locally closed* i.e., intersection of closed and open—subvariety Σ_I of Gr(2,4), and that each Σ_I is isomorphic to an affine space (of what dimension?)
- (b) Argue that $\overline{\Sigma_I} = \bigcup \Sigma_{I'}$ for appropriately chosen I'. Partially order the Σ_I according to whether the closure of one contains the other.
- 4. Liu exercise 3.2.6.

Problem Set 10. Due Friday November 17 in class

- 1. Practice the valuative criterion: use it to verify that \mathbb{A}_k^n is proper over k if and only if n = 0.
- 2. Over \mathbb{C} , argue that the polynomial

$$F(x) = x^{6} + bx^{5} + cx^{4} + dx^{3} + ex^{2} + fx + g$$

has at most 3 distinct roots iff F and F' have a common factor of degree 3. Set up a Macaulay2 computation to find equations for the closed set of \mathbb{A}^6 consisting of those points (b, c, d, e, f, g) such that F(x) has at most 3 distinct roots.¹

- 3. Liu exercise 3.3.12
- 4. Prove the statement in Liu exercise 3.3.15, using the suggested method or otherwise.

Problem Set 11. Due Friday December 1 in class

- 1. List, with justification, the points of Spec $\mathbb{R}[x, y]/(x^2 + y^2)$.
- 2. Eisenbud-Harris exercises II-6, II-7.
- 3. Liu exercises 3.2.9, 4.2.7.

Problem Set 12. Due Monday December 11 in class

- 1. Vakil exercise 5.4.H.
- 2. Liu exercises 4.2.10, 4.2.11, and 4.2.12. For 4.2.10, note "Euler's Lemma," that a homogeneous degree d polynomial $F \in k[T_0, \ldots, T_n]$ satisfies $\sum T_i \frac{\partial F}{\partial T_i} = d \cdot F$.

¹ If you actually want to try it, here is some sample Macaulay2 code that may be helpful. R=QQ[a.f];

M=matrix{{a,b,c},{d,e,f}};
minors(2,M)