GRAPH COMPLEXES AND THE TOP-WEIGHT EULER CHARACTERISTIC OF $\mathcal{M}_{q,n}$

MELODY CHAN

CONTENTS

1.	Graphs	1
2.	Kontsevich's graph complex	2
3.	Frobenius characteristics	3
4.	Main theorem	4
5.	Counting with groupoids	6
App	pendix A. Exercises	8
App	pendix B. Exercise hints and solutions	10
References		10

These are notes for a lecture series at ATOM. The main reference for the material below is [CFGP19].

1. Graphs

Definition 1.1. A graph G is:

- finite sets V(G) and H(G), whose elements are called *vertices* and *half-edges*,
- a fixed-point free involution $s: H(G) \to H(G)$ (the "other half edge" map), and
- a map $r: H(G) \to V(G)$ ("root map").

So loops and multi-edges are allowed, in that they were never disallowed. Let $E(G) = H(G)/(x \sim s(x))$; its elements are *edges*.

An isomorphism $G \to G'$ is what it must be: a bijection $V(G) \to V(G')$ and $H(G) \to H(G')$ compatible with the involutions s, s' and the root maps r, r'.

Definition 1.2. An *n*-marking of G is a function $\{1, \ldots, n\} \rightarrow V(G)$.

Definition 1.3. (G, m) is called *stable* if $|r^{-1}(v) \amalg m^{-1}(v)| \ge 3$ for all $v \in V(G)$, and *connected and genus g* if the geometric realization |G| is connected and has Euler characteristic 1 - g.

Remark 1.4. Argue that there are only finitely many isomorphism classes of stable, marked (G, m) of type (g, n).

Date: July 16, 2020.

Exercise 1.5. Enumerate the isomorphism classes of stable, 2-marked graphs of genus 1.

How many, exactly? When g = 0, you can say a lot: the sequence for n = 3, 4, 5, ... is

 $1, 4, 26, 236, 2752, 39208, 660032, 12818912, 282137824, 6939897856, 188666182784, 5617349020544, \ldots$

(OEIS A000311. These are also counts of *phylogenetic trees* on n-1 taxa)

In complete generality, I don't know. For n = 0, at least, the sequence for g = 2, 3, 4, 5, ...

is

7, 42, 379, 4555, 69808, 1281678, 27297406, ??

(OEIS A174224, Maggiolo-Pagani, also see my thesis)

But a closely related enumerative problem-that of the "orbifold Euler characteristic" of Kontsevich's graph complex-has a beautiful closed formula. Moreover, this formula is closely related to the formula for the *top-weight Euler characteristic* of $\mathcal{M}_{q,n}$.

2. Kontsevich's graph complex

Fix $g, n \ge 0$ with 2g - 2 + n > 0. Define the following rational chain complex $G^{(g,n)}$; it is an *n*-marked version of Kontsevich's graph complex $G^{(g)}$.¹ In degree $p, G_p^{(g,n)}$ is a \mathbb{Q} -vector space with generators

 $[G, m, \omega]$

for (G, m) a connected, loopless² *n*-marked stable graph of genus g, and $\omega \colon E(G) \xrightarrow{\cong} \{0, \ldots, p\}$ a bijection. We impose relations

$$[G, m, \omega] = \operatorname{sgn}(\sigma)[G', m', \omega']$$

whenever there is an isomorphism $(G, m) \xrightarrow{f} (G', m')$ under which ω and ω' are related by permutation $\sigma \in S_{p+1}$.

The differential is a signed sum of edge contractions. Check $\partial^2 = 0$. This talk focuses on Euler characteristics, hence doesn't focus on the differential.

So $G^{(g,n)}$ is a finite chain complex. In fact:

Definition 2.1. Say a marked graph (G, m) is alternating if $Aut(G, m) \to Sym E(G)$ factors through the alternating subgroup Alt E(G).

Then (G, m, w) = -(G, m, w) = 0 for any non-alternating G. Hence dim $G_p^{(g,n)} =$ number of alternating marked graphs of type (g, n) with p + 1 edges, up to isomorphism.

Example 2.2. If G has parallel edges then G is not alternating. Hence if G is covered by triangles then $\partial[G, m, w] = 0$.

Proposition 2.3. The top-weight Euler characteristic of $\mathcal{M}_{g,n}$ is the Euler characteristic of $G^{(g,n)}$:

$$\sum_{p} (-1)^p \dim G_p^{(g,n)}$$

¹Be warned that there are several different flavors of graph complexes; see [Kon93]

²In fact it's OK to allow or disallow loops, either way.

or, better yet,

$$\sum_{n} (-1)^p [G_p^{(g,n)}]$$

as a virtual S_n -representation, meaning an element in the Grothendieck group of S_n -representations: a formal \mathbb{Q} -linear combination of S_n -representations.

Proof. Brief sketch of proof from [CGP].

3. FROBENIUS CHARACTERISTICS

Recall that the irreps of S_n are in bijection with partitions $\lambda \vdash n$; write V_{λ} for the Specht module corr to λ . Suppose you have a sequence W_1, W_2, \ldots where

$$W_n = \sum_{\lambda \vdash n} c_\lambda V_\lambda, \qquad c_\lambda \in \mathbb{Q}$$

is a virtual finite-dimensional S_n representation. You can encode all these simultaneously by an element of the (completed) ring of symmetric functions with \mathbb{Q} -coefficients, defined as follows:

Definition 3.1. Let

$$\Lambda = \lim_{\longleftarrow} \mathbb{Z}[x_1, \dots, x_n]^{S_n}$$

denote the *ring of symmetric functions*, where the inverse limit above taken in the category of graded rings; it has elements like

$$x_1x_2^2 + x_1^2x_2 + x_1x_3^2 + x_1^2x_3 \cdots$$

Let $\widehat{\Lambda} = \lim_{\leftarrow} \mathbb{Z}[[x_1, \dots, x_n]]^{S_n}$ be its degree completion.

"Recall" that Schur functions s_{λ} provide a \mathbb{Z} -basis for this ring as a \mathbb{Z} -module. Define homogeneous and inhomogeneous power sum symmetric functions p_i and P_i , and define p_{λ} and P_{λ} . Remark that the p_{λ} are a \mathbb{Q} -basis for $\Lambda \otimes \mathbb{Q}$.

Definition 3.2. Let W be a finite-dimensional S_n -representation. Its **Frobenius characteristic**, denoted ch W, is the degree n symmetric function defined in two equivalent ways:

(1)

(

$$\operatorname{ch} W = \sum c_{\lambda} s_{\lambda},$$

for
$$W \cong \bigoplus c_{\lambda} V_{\lambda}$$
,
2)

$$\operatorname{ch} W = \frac{1}{n!} \sum_{\sigma \in S_n} \operatorname{Tr}_W(\sigma) \psi(\sigma),$$

where $\psi(\sigma) = p_{a_1} \cdots p_{a_\ell}$ for σ with cycles of length $a_1 \ge \cdots \ge a_\ell$.

Lemma 3.3. These are equal.

M. CHAN

Proof. It's not implausible that something like this holds, since to know a representation is exactly to know its character. This lemma is equivalent to the combinatorial fact (omitted) that the transition matrix from the basis $\{s_{\lambda} : \lambda \vdash n\}$ to $\{p_{\lambda} : \lambda \vdash n\}$ of $\Lambda_n \otimes \mathbb{Q}$ is the character table of S_n .

Definition 3.4. Similarly, if you have a sequence of virtual f.d. S_n -representations $W = \{W_n\}$ for $n = 0, 1, 2, \ldots$, define ch W by extending linearly; now it is an element of $\widehat{\Lambda}$. So W knows ch W and ch W knows W.

4. MAIN THEOREM

Let $g \geq 2$. Let z_g denote the Frobenius characteristic of $W = \{W_n\}$ with $W_n = \sum_p (-1)^p [G_p^{(g,n)}]$. So z_g knows, for fixed g and all n at once, all the Euler characteristics of the complex $G^{(g,n)}$, and it knows it as S_n -reps.

Theorem 4.1. [CFGP]

(1)
$$z_g = \sum_{k,m,r,s,a,d} \frac{(-1)^{k-r}(k-1)!B_r}{r!} m^{r-1} \cdot \prod_{p \mid (m,d_1,\dots,d_s)} \left(1 - \frac{1}{p^r}\right) \frac{1}{P_m^k} \prod_{i=1}^s \frac{\mu(m/d_i)^{a_i} P_{d_i}^{a_i}}{a_i!},$$

where the sum is over integers k, m > 0 and $r, s \ge 0$, and s-tuples of positive integers $a = (a_1, \ldots, a_s)$ and $d = (d_1, \ldots, d_s)$, such that

- (2) $0 < d_1 < \dots < d_s < m$, and $d_i \mid m$;
- (3) $a_1 + \dots + a_s + r = k + 1;$
- $(4) a_1d_1 + \dots + a_sd_s + g 1 = km,$

and the product runs over primes p dividing m and all d_1, \ldots, d_s .

Other formula hold for g = 0, g = 1, now with the sum starting at n = 3 and n = 1 respectively.

Remark 4.2. By the comparison theorem to top-weight cohomology discussed in STAGOSAUR, this is also the Frobenius characteristic of the top-weight Euler characteristic of $\mathcal{M}_{g,n}$, the moduli of genus g, n-marked algebraic curves.

Remark 4.3. Contextual remarks. History of formula. Related results.

A faint whiff of the proof follows.

Proof. We have

$$z_g = \sum_{i,n \ge 0} \sum_{\sigma \in S_n} \frac{(-1)^i}{n!} \chi_{G_i^{(g,n)}}(\sigma) \psi(\sigma)$$

by definition. Here $\chi_{G_i^{(g,n)}}(\sigma)$ denotes the *character* of the S_n -rep $G_i^{(g,n)}$ at σ ; recall the character is the trace of a matrix representing the action of σ .

By definition of trace, we have to:

4

1. Count marked graphs [G, m] that are fixed by a given $\sigma \in S_n$. Each [G, m] should be counted with coefficient $\psi(\sigma)$ times

$$\begin{cases} (-1)^{|E(G)|} & \text{if } G \text{ is alternating,} \\ 0 & \text{else.} \end{cases}$$

Cute observation: this is the same as counting with coefficients

$$\sum_{\tau \in \operatorname{Aut}(G,m)} (-1)^{|E(G)|} \cdot \frac{\operatorname{sgn} \tau_E}{|\operatorname{Aut}(G,m)|}$$

(Explain why.) Moreover,

Theorem 4.4. [CGP19] The subcomplex of $G^{(g,n)}$ spanned by $[G, m, \omega]$ with m not injective is acyclic.

So we need only count [G, m] with m injective. What do these look like? They look like n marked points sprinkled onto a genus g graph (as opposed to nontrivial trees of marked points sprouting off of a genus g graph). This is crucial to understanding $G^{(g,n)}$ for all n simultaneously: study unmarked graphs, then sprinkle marked points on. It allows us to reduce to:

2. Count pairs (G, τ) for G an unmarked genus g graph, and $\tau \in Aut(G)$. Claim—this is not at all trivial, see [CFGP19, Proposition 3.2]—that such a pair (G, τ) should be counted with coefficient

$$(-1)^{|E(G)|} \cdot \operatorname{sgn} \tau_E \frac{P(\tau_V)P(\tau_E)}{P(\tau_H)},$$

where τ_V , τ_E , and τ_H denote the permutations on the sets V(G), E(G), H(G) of G induced by τ , and $P(\rho) := P_{a_1} \cdots P_{a_s}$ for a permutation ρ with cycle type $a_1 \ge \cdots \ge a_s$.

(Do an example to try to get the idea across.)

3. Count stable orbigraphs (X, f), counted with coefficient ?, where ? is sketched below.

What's an orbigraph?

Definition 4.5. An orbigraph is a pair (X, f) where X is a graph and $f: V(X) \amalg E(X) \to \mathbb{Z}_{>0}$ is a function satisfying f(r(x))|f([x]) for all $x \in H(X)$.

Definition 4.6. An orbigraph (X, f) is *stable* if it satisfies

- (i) $\operatorname{val}_X(v) > 0$ for all $v \in V(X)$,
- (ii) if $\operatorname{val}_X(v) < 3$ then there exists an $h \in H(X)$ with r(h) = v and f([h]) > f(v).

Give example of an orbigraph associated to (G, τ) .

Anyways, here's the idea: replace the count of (G, τ) by counting orbigraphs $(X, f) = G/\tau$. Each (X, f) needs to be weighed with the number of ways that (X, f) arises as G/τ . This idea of passing to the quotient is inspired by Gorsky's proof [Gor14]. (Note, however,

orbigraphs are a bit more complicated than orbicurves in the sense that in a graph quotient, nontrivial stabilizers can appear on codimension 0 subgraphs.)

4. Show that the total contributions of lots of stable orbigraphs (X, f) are zero. How we do that is omitted here. The ones that are left look quite a lot like marked graphs, with varying genera and numbers of marked points. Then (fast forwarding much of the proof) the final step is the remarkable fact (Kontsevich, Penner, see [Ger04]) that for each (g, n) with 2g - 2 + n > 0,

(5)
$$\sum_{G} \frac{(-1)^{|E(G)|}}{|\operatorname{Aut} G|} = (-1)^{n+1} \frac{(g+n-2)!}{g!} \cdot B_g$$

where the sum is over connected, stable genus g, n-marked graphs.

5. Counting with groupoids

In steps 1, 2, 3 above, things were being counted with automorphisms. It is quite helpful to conceptualize each counting problem in terms of "orbi-summation" over groupoids, and each reduction from one counting problem to the next as a *pushforward along morphisms* of groupoids. Without making any claim of originality for this circle of ideas, we isolate this combinatorial technique below.

Definition 5.1. A groupoid \mathcal{G} is a category in which all morphisms are isomorphisms. Say it's a finite groupoid if it is equivalent to a category with finitely many (objects and) morphisms. For such a \mathcal{G} , write $\pi_0(\mathcal{G})$ for the set of isomorphism classes.

Example 5.2. Fix *n*. There's a finite groupoid \mathcal{D}_n whose objects are all regular *n*-gons of side length 1, and whose morphisms are all isometries. It has one isomorphism class, and for any objects P, Q there are 2n morphisms from P to Q.

Let \mathcal{G} be a finite groupoid, let V be a rational vector space (you are welcome to take $V = \mathbb{Q}$ throughout), and let $f : \pi_0(\mathcal{G}) \to V$ be a function.

Definition 5.3. We define the orbisum of f by

$$\int_{\mathcal{G}} f = \sum_{[x] \in \pi_0(\mathcal{G})} \frac{f(x)}{|\operatorname{Aut}(x)|} \in V.$$

In particular, the rational number $\int_{\mathcal{G}} 1$ is the groupoid cardinality of \mathcal{G} .

Example 5.4. \mathcal{D}_n has groupoid cardinality 1/2n. To be cheeky, we say "there are exactly 1/2n regular *n*-gons of side length 1."

Definition 5.5. If $F : \mathcal{G} \to \mathcal{H}$ is a functor between finite groupoids and $f : \pi_0(\mathcal{G}) \to V$ is a function, we define the push-forward $(F_*f) : \pi_0(\mathcal{H}) \to V$ by the formula

(6)
$$(F_*f)([h]) = \int_{(F \downarrow h)} f$$

where the subscript denotes the "comma category" $(F \downarrow h)$.

Here, regard f as a function on $\pi_0(F \downarrow h)$ by composing with the natural map $\pi_0(F \downarrow h) \rightarrow \pi_0(\mathcal{G})$. "Recall" the comma category $(F \downarrow h)$: objects are pairs (g, ϕ) with g an object of \mathcal{G} and $\phi : F(g) \rightarrow h$ a morphism in \mathcal{H} , and morphisms $(g, \phi) \rightarrow (g', \phi')$ are morphisms $j : g \rightarrow g'$ in \mathcal{G} such that $\phi' \circ F(j) = \phi$. Then

$$\int_{\mathcal{G}} f = \int_{\mathcal{H}} F_* f.$$

Remark 5.6. Reframe steps 1, 2, 3 as pushforwards of orbisummations along appropriate morphisms from

- (1) The groupoid of (stable, connected) genus g, *n*-marked graphs (G, m);
- (2) The groupoid of genus g, unmarked graphs G, together with $\tau \in Aut(G)$;
- (3) The groupoid of orbigraphs.

Acknowledgments. Thanks to Dan Corey for TAing and for a careful reading of the notes and exercises.

M. CHAN

APPENDIX A. EXERCISES

Exercises: graphs and graph complexes.

- (1) For $g \geq 3$, the wheel W_g is the graph obtained from a g-cycle C_g by adding a new vertex connected to the g vertices of C_g . Show W_g , with no marking function, is alternating iff g is odd. Show that $\partial[W_q, \omega] = 0$ for arbitrary ω .
- (2) Write down the chain complex $G^{(1,3)}$.
- (3) Write down the chain complex $G^{(1,4)}$.

Your last two results should agree with the following theorem: for $n \ge 3$, the chain complex $G^{(1,n)}$ has homology concentrated in degree n-1, of rank (n-1)!/2 [CGP19]. Check this.

Exercises: Frobenius characteristics. This exercise is related, in spirit, to the proof of the formula for z_1 found in [CFGP19, Proposition 1.5].

Let $\operatorname{Conf}_n(X)$ denote the configuration space of n ordered, distinct marked points on a topological space X. Let $W_n = H^0(\operatorname{Conf}_n(S^1); \mathbb{Q})$, and let $W = \{W_n\}_{n>1}$. Prove that

$$\operatorname{ch} W = -\sum_{k \ge 1} \frac{\phi(k)}{k} \log(1 - p_k).$$

Either do your own thing,³ or try the steps below.

- (4) What is the homotopy type of $\operatorname{Conf}_n(S^1)$? What is $\dim H^0(\operatorname{Conf}_n(S^1); \mathbb{Q})$? How does S_n act on $H^0(\operatorname{Conf}_n(S^1); \mathbb{Q})$?
- (5) Fix n. For which permutations $\sigma \in S_n$ is the character of this action at σ nonzero?
- (6) For d|n, count the number of permutations in S_n that are a product of d disjoint n/d-cycles.
- (7) Fix σ a product of *d* disjoint n/d-cycles, compute the character of this action at σ . You might use the Euler ϕ function.
- (8) Compute the Frobenius characteristic of W_n as

$$\operatorname{ch} W_n = \frac{1}{n} \sum_{d|n} \phi(n/d) p_{n/d}^d.$$

(9) By summing over all n and over d dividing n, and setting k = n/d, conclude the formula for ch W above.

Exercises: Groupoid cardinality.

- (10) What is the groupoid cardinality of the groupoid of all groups of order 4?
- (11) A finite group G acting on a finite set X yields a groupoid with object set X and a morphism $x \to gx$ for every (g, x). Show that the cardinality of this groupoid is |X|/|G|.

³E.g., using [CFGP19, Lemma 9.1].

- (12) This is an exercise on the number of degree d covering spaces of a fixed genus g graph. Fix R_g a graph with 1 vertex and g loops.⁴
 - Consider the groupoid $\mathcal{C}_{d,g}$ of "degree d covers of R_g ." Precisely,
 - objects are morphisms⁵ $G \to R_g$, where G is a graph and $G \to R_g$ is a degree d covering space when regarded as a map of CW complexes.
 - for $f: G \to R_g$ and $f': G' \to R_g$, a morphism $f \to f'$ is a commuting diagram

Show that

$$\int_{C_{d,g}} 1 = (d!)^{g-1}.$$

Example: the three isomorphism classes of objects in $C_{3,1}$ are drawn below, with 6, 2, and 3 automorphisms respectively. Thus $\int_{C_{d,g}} 1 = \frac{1}{6} + \frac{1}{2} + \frac{1}{3} = 1$.

- (13) Consider now the groupoid $\widetilde{C}_{d,g}$ of degree d covers of all roses with g petals. Precisely,
 - Objects are morphisms $G \to R$, where G is a graph, R is a graph that is isomorphic to R_g , and $G \to R$ is a degree d covering space when regarded as a map of CW complexes.
 - for $f: G \to R$ and $f': G' \to R'$, a morphism $f \to f'$ is a commuting diagram

$$\begin{array}{c} G \overset{\cong}{\longrightarrow} G' \\ \downarrow f & \downarrow f' \\ R \overset{\cong}{\longrightarrow} R' \end{array}$$

Compute the groupoid cardinality of this groupoid.

 $^{{}^{4}}R_{g}$ is sometimes called a "rose with g petals."

⁵A morphism of graphs $G = (V, H, i, r) \rightarrow G' = (V', H', i', r')$ is a pair of maps $V \rightarrow V'$ and $H \rightarrow H'$ compatible with i, i' and r, r'. That is, it sends vertices to vertices and edges to edges, preserving vertex-edge incidence.

M. CHAN

APPENDIX B. EXERCISE HINTS AND SOLUTIONS

Hints, solutions: graphs and graph complexes.

- (1) If G has parallel edges then [G, m, w] = 0 in $G^{(g,n)}$. Hence, for any G that is covered by triangles—meaning every edge is in a triangle— $\partial[G, m, w] = 0.6^{-7}$
- (2) The chain complex $G^{(1,3)}$ should be rank 1, concentrated in degree 2.
- (3) The chain complex $G^{(1,4)}$ should be rank 9 in degree 3 and rank 6 in degree 2.

Hints, solutions: Frobenius characteristics.

- (b) **Solution:** C_n acting on left cosets of C_n . (c) **Solution:** (b) **Solution:** (c) **So**
- Exactly those that are a product of n/d disjoint *d*-cycles, for some d|n. (9)
- (6) Solution: $\cdot_{(p(p/u)ip)/iu}$
- (7) Solution: $\int_{1-p}^{1} (p/u)_{\mathsf{i}}(1-p) \cdot (p/u)\phi$

Hints, solutions: Groupoid cardinality.

- (10) Solution: $\cdot_{c/z}$
- (11) This is the orbit-stabilizer lemma.
- (12) Identify $C_{d,g}$ as having the same groupoid cardinality as⁸the groupoid whose objects are

$$\{(\sigma_1,\ldots,\sigma_g):\sigma_i\in S_d\}$$

with a morphism $(\sigma_1, \ldots, \sigma_q) \to (\tau \sigma_1 \tau^{-1}, \ldots, \tau \sigma_q \tau^{-1})$ for each $\tau \in S_d$.

(13) Define a functor $F: \widetilde{C}_{d,g} \to \mathcal{R}_g$, where \mathcal{R}_g is the groupoid of graphs isomorphic to R_g . Identify $(F \downarrow R_g)$ with a familiar groupoid.

Solution: ... $\mathcal{C}_{q,g}$ is equivalent to $\mathcal{C}_{d,g}$. The answer is $\frac{2g \cdot g^{!}}{2g \cdot g^{!}}$.

References

- [CFGP19] Melody Chan, Carel Faber, Søren Galatius, and Sam Payne, The S_n -equivariant top weight Euler characteristic of $\mathcal{M}_{g,n}$, arXiv:1904.06367, 2019.
- [CGP19] Melody Chan, Søren Galatius, and Sam Payne, Topology of moduli spaces of tropical curves with marked points, arXiv:1903.07187, 2019.
- [Ger04] Ferenc Gerlits, The Euler characteristic of graph complexes via Feynman diagrams, arXiv:0412094v2, 2004.

⁶In this situation [G, m, w] represents a homology class in the graph complex. But detecting whether or not this homology class is nonzero is much harder! The proof that W_g is nonzero in homology of the graph complex, for g odd, is covered in STAGOSAUR.

⁷It would be great if there were lots of (G, m) that were alternating, covered by triangles, and of maximal homological degree in $G^{(g,n)}$; then you'd get a nonzero homology class in $G^{(g,n)}$ (and hence a class in topweight cohomology of $\mathcal{M}_{g,n}$.) Actually, there are only two. One of them is W_3 ; find the other!

⁸Indeed, equivalent as a category to

- [Gor14] Eugene Gorsky, The equivariant Euler characteristic of moduli spaces of curves, Adv. Math. 250 (2014), 588–595. MR 3122177
- [Kon93] Maxim Kontsevich, Formal (non)commutative symplectic geometry, The Gel'fand Mathematical Seminars, 1990–1992, Birkhäuser Boston, Boston, MA, 1993, pp. 173–187. MR 1247289

Department of Mathematics, Brown University, Box 1917, Providence, RI 02912 $\textit{E-mail address: melody_chan@brown.edu}$