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These are notes for a lecture series at ATOM. The main reference for the material below
is [CFGP19].

1. GRAPHS

Definition 1.1. A graph G is:

e finite sets V(G) and H(G), whose elements are called vertices and half-edges,
e a fixed-point free involution s : H(G) — H(G) (the “other half edge” map), and
e amap r: H(G) = V(G) (“root map”).

So loops and multi-edges are allowed, in that they were never disallowed. Let E(G) =
H(G)/(z ~ s(x)); its elements are edges.

An isomorphism G — G’ is what it must be: a bijection V(G) — V(G') and H(G) —
H(G') compatible with the involutions s, s’ and the root maps r,r’.

Definition 1.2. An n-marking of G is a function {1,...,n} — V(G).

Definition 1.3. (G,m) is called stable if |r~1(v) Im~1(v)| > 3 for all v € V(G), and con-
nected and genus g if the geometric realization |G| is connected and has Euler characteristic

1—g.
Remark 1.4. Argue that there are only finitely many isomorphism classes of stable,
marked (G, m) of type (g,n).
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Exercise 1.5. Enumerate the isomorphism classes of stable, 2-marked graphs of genus 1.

How many, exactly? When g = 0, you can say a lot: the sequence for n = 3,4,5, ... is

1,4, 26,236, 2752, 30208, 660032, 12818912, 282137824, 6939897856, 188666182784, 5617349020544, . . .

(OEIS A000311. These are also counts of phylogenetic trees on n — 1 taxa)

In complete generality, I don’t know. For n = 0, at least, the sequence for g = 2,3,4,5, ...
is

7,42, 379, 4555, 69808, 1281678, 27297406, 77

(OEIS A174224, Maggiolo-Pagani, also see my thesis)

But a closely related enumerative problem—that of the “orbifold Euler characteristic”
of Kontsevich’s graph complex—has a beautiful closed formula. Moreover, this formula is
closely related to the formula for the top-weight Euler characteristic of Mg ,.

2. KONTSEVICH’S GRAPH COMPLEX

Fix g,n > 0 with 29 —2+n > 0. Define the following rational chain complex G@™); it is
)

an n-marked version of Kontsevich’s graph complex G(g) In degree p, G;g ™ is a Q-vector

space with generators
G, m,w]

for (G,m) a connected, looples n-marked stable graph of genus g, and w: E(G) =
{0,...,p} a bijection. We impose relations

[G,m,w] = sgn(o)[G',m, ']

' m’) under which w and ' are related by

whenever there is an isomorphism (G, m) EN (G
permutation o € Sp41.

The differential is a signed sum of edge contractions. Check 9> = 0. This talk focuses
on Euler characteristics, hence doesn’t focus on the differential.

So G is a finite chain complex. In fact:

Definition 2.1. Say a marked graph (G,m) is alternating if Aut(G,m) — Sym E(G)
factors through the alternating subgroup Alt E(G).

Then (G,m,w) = —(G,m,w) = 0 for any non-alternating G. Hence dimGz(gg’n) =
number of alternating marked graphs of type (g,n) with p 4+ 1 edges, up to isomorphism.

Example 2.2. If G has parallel edges then G is not alternating. Hence if G is covered by
triangles then 0[G, m,w] = 0.

Proposition 2.3. The top-weight Euler characteristic of M, is the Euler characteristic
of Glon).
> (1P dim G,
P

1Be warned that there are several different flavors of graph complexes; see [Kon93]
2In fact it’s OK to allow or disallow loops, either way.
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or, better yet,

S 1rIGE)
P
as a wvirtual Sy-representation, meaning an element in the Grothendieck group of Sj-

representations: a formal Q-linear combination of S,-representations.

Proof. Brief sketch of proof from [CGP]. O

3. FROBENIUS CHARACTERISTICS

Recall that the irreps of S, are in bijection with partitions A - n; write V), for the Specht

module corr to A. Suppose you have a sequence Wi, Wa, ... where
Wn = ZC)\V)\, C) € Q
AFn

is a virtual finite-dimensional S,, representation. You can encode all these simultaneously
by an element of the (completed) ring of symmetric functions with Q-coefficients, defined
as follows:

Definition 3.1. Let

A =limZ[zy,..., xn]S"
%

denote the ring of symmetric functions, where the inverse limit above taken in the category
of graded rings; it has elements like

xlx% + x%:rz + xw% + x%mg o
Let A = lim_ Z[[x1,...,2,)]" be its degree completion.
“Recall” that Schur functions sy provide a Z-basis for this ring as a Z-module. Define

homogeneous and inhomogeneous power sum symmetric functions p; and P;, and define p)
and P,. Remark that the p) are a Q-basis for A ® Q.

Definition 3.2. Let W be a finite-dimensional S,-representation. Its Frobenius char-
acteristic, denoted ch W, is the degree n symmetric function defined in two equivalent
ways:

(1)
chW = ZC)\SA,
for W= P erVa,
(2) )
hW =— % Trw(0)¥(0),

T oES,
where ¢(0) = pq, - - - Pa, for o with cycles of length a; > --- > ay.

Lemma 3.3. These are equal.
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Proof. It’s not implausible that something like this holds, since to know a representation is
exactly to know its character. This lemma is equivalent to the combinatorial fact (omitted)
that the transition matrix from the basis {sy : A - n} to {px : A F n} of A, ® Q is the
character table of S,. O

Definition 3.4. Similarly, if you have a sequence of virtual f.d. Sp-representations W =
{W,} for n =10,1,2,..., define ch W by extending linearly; now it is an element of A. So
W knows ch W and ch W knows W.

4. MAIN THEOREM

Let ¢ > 2. Let 2z, denote the Frobenius characteristic of W = {W,} with W, =
> p(=1)P [Gl(yg ’")}. So z4 knows, for fixed g and all n at once, all the Euler characteristics of

the complex G9™ and it knows it as S,-reps.
Theorem 4.1. [CFGP)]
—~1)k="(k — 1)!B, 1\ 1 vy ulm/di)* Py

r! Pk a;!
k,m,r,s,a,d p|(m,da,...,ds)

where the sum is over integers k,m > 0 and r,s > 0, and s-tuples of positive integers
a=(ay,...,as) and d = (dy,...,ds), such that

(2) 0<di <---<ds<m, and d;|m;
3) ar+---+as+r=~k+1;
(4) ardy + - +asds + g — 1 = km,
and the product runs over primes p dividing m and all dy, ..., ds.

Other formula hold for ¢ = 0, g = 1, now with the sum starting at n = 3 and n = 1
respectively.

Remark 4.2. By the comparison theorem to top-weight cohomology discussed in STAGOSAUR,
this is also the Frobenius characteristic of the top-weight Euler characteristic of M, ,, the
moduli of genus g, n-marked algebraic curves.

Remark 4.3. Contextual remarks. History of formula. Related results.
A faint whiff of the proof follows.

Proof. We have
(=1)’
Zg = Z Z TXG(g,n)(U)%D(U)
i,n>00€Sy ’ !

by definition. Here y Glom (o) denotes the character of the S,-rep GZ(-g ™ at o; recall the

character is the trace of a matrix representing the action of o.
By definition of trace, we have to:
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1. Count marked graphs [G,m] that are fixed by a given o € S,. Each |G, m)]
should be counted with coefficient ¥ (o) times

{(—1)|E(G) if G is alternating,

0 else.

Cute observation: this is the same as counting with coefficients

Z (—1)E@I, _S8NTE
T€Aut(G,m) ’ Aut(G’ ’I?’L)|

(Explain why.) Moreover,

Theorem 4.4. [CGP19] The subcomplex of G spanned by [G, m,w] with m not injec-
tive is acyclic.

So we need only count [G,m]| with m injective. What do these look like? They look like
n marked points sprinkled onto a genus g graph (as opposed to nontrivial trees of marked
points sprouting off of a genus g graph). This is crucial to understanding G for all n
simultaneously: study unmarked graphs, then sprinkle marked points on. It allows us to
reduce to:

2. Count pairs (G,7) for G an unmarked genus g graph, and 7 € Aut(G).
Claim—this is not at all trivial, see [CEFGP19, Proposition 3.2]—that such a pair (G, 7)
should be counted with coefficient
P(rv)P(7g)

P(rg)
where 7y, 7, and 7 denote the permutations on the sets V(G), E(G), H(G) of G induced
by 7, and P(p) := Py, - -+ P,, for a permutation p with cycle type a; > --- > as.

(_1)|E(G)| “SEgNTE

(Do an example to try to get the idea across.)

3. Count stable orbigraphs (X, f), counted with coefficient ?, where 7 is
sketched below.
What’s an orbigraph?

Definition 4.5. An orbigraph is a pair (X, f) where X is a graph and f : V(X) I E(X) —
Z~o is a function satisfying f(r(x))|f([z]) for all x € H(X).
Definition 4.6. An orbigraph (X, f) is stable if it satisfies
(i) valx(v) > 0 for all v € V(X),
(ii) if valx(v) < 3 then there exists an h € H(X) with r(h) = v and f([h]) > f(v).
Give example of an orbigraph associated to (G, 7).

Anyways, here’s the idea: replace the count of (G, 7) by counting orbigraphs (X, f) =
G /7. Each (X, f) needs to be weighed with the number of ways that (X, f) arises as G/.
This idea of passing to the quotient is inspired by Gorsky’s proof [Gorl4]. (Note, however,
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orbigraphs are a bit more complicated than orbicurves in the sense that in a graph quotient,
nontrivial stabilizers can appear on codimension 0 subgraphs.)

4. Show that the total contributions of lots of stable orbigraphs (X, f) are
zero. How we do that is omitted here. The ones that are left look quite a lot like marked
graphs, with varying genera and numbers of marked points. Then (fast forwarding much
of the proof) the final step is the remarkable fact (Kontsevich, Penner, see [Ger04]) that
for each (g,n) with 29 —2+4n >0,

(1)) g +n—2)
— = (-1 = B,.
where the sum is over connected, stable genus g, n-marked graphs. O

5. COUNTING WITH GROUPOIDS

In steps 1, 2, 3 above, things were being counted with automorphisms. It is quite helpful
to conceptualize each counting problem in terms of “orbi-summation” over groupoids, and
each reduction from one counting problem to the next as a pushforward along morphisms
of groupoids. Without making any claim of originality for this circle of ideas, we isolate
this combinatorial technique below.

Definition 5.1. A groupoid G is a category in which all morphisms are isomorphisms.
Say it’s a finite groupoid if it is equivalent to a category with finitely many (objects and)
morphisms. For such a G, write 7(G) for the set of isomorphism classes.

Example 5.2. Fix n. There’s a finite groupoid D,, whose objects are all regular n-gons of
side length 1, and whose morphisms are all isometries. It has one isomorphism class, and
for any objects P, there are 2n morphisms from P to Q.

Let G be a finite groupoid, let V' be a rational vector space (you are welcome to take
V = Q throughout), and let f : mo(G) — V be a function.

Definition 5.3. We define the orbisum of f by
f(z)
f= ——F—c V.
/g 2 | Aut(z)]
[z]€m0(9)

In particular, the rational number fg 1 is the groupoid cardinality of G.

Example 5.4. D,, has groupoid cardinality 1/2n. To be cheeky, we say “there are exactly
1/2n regular n-gons of side length 1.”

Definition 5.5. If F': G — H is a functor between finite groupoids and f : mo(G) — V is
a function, we define the push-forward (F.f) : mo(H) — V by the formula

(6) (ES) () = / /,

(Fih)
where the subscript denotes the “comma category” (F | h).
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Here, regard f as a function on mo(F | h) by composing with the natural map mo(F |
h) — m(G). “Recall” the comma category (F | h): objects are pairs (g, ¢) with g an object
of G and ¢ : F(g) — h a morphism in #, and morphisms (g, ¢) — (¢’,¢’) are morphisms
j:g— ¢ in G such that ¢/ o F(j) = ¢. Then

fgf:fHF*f-

Remark 5.6. Reframe steps 1, 2, 3 as pushforwards of orbisummations along appropriate
morphisms from

(1) The groupoid of (stable, connected) genus g, n-marked graphs (G, m);
(2) The groupoid of genus g, unmarked graphs G, together with 7 € Aut(G);
(3) The groupoid of orbigraphs.

Acknowledgments. Thanks to Dan Corey for TAing and for a careful reading of the
notes and exercises.
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APPENDIX A. EXERCISES

Exercises: graphs and graph complexes.

(1) For g > 3, the wheel W, is the graph obtained from a g-cycle Cy by adding a new
vertex connected to the g vertices of Cy. Show W, with no marking function, is
alternating iff g is odd. Show that O[W,,w] = 0 for arbitrary w.

(2) Write down the chain complex G2,

(3) Write down the chain complex G4,

Your last two results should agree with the following theorem: for n > 3, the chain complex
G has homology concentrated in degree n — 1, of rank (n — 1)!/2 [CGP19]. Check this.

Exercises: Frobenius characteristics. This exercise is related, in spirit, to the proof
of the formula for z; found in [CEGP19, Proposition 1.5].

Let Conf, (X) denote the configuration space of n ordered, distinct marked points on a
topological space X. Let W,, = H°(Conf,(S'); Q), and let W = {W,,},,>1. Prove that

chW = — Z qbg{:k) log(1 — pg).

k>1

Either do your own thingﬁ or try the steps below.

(4) What is the homotopy type of Conf,(S')? What is dim H%(Conf,(S'); Q)? How
does S, act on H°(Conf,(S');Q)?

(5) Fix n. For which permutations o € S, is the character of this action at o nonzero?

(6) For d|n, count the number of permutations in S, that are a product of d disjoint
n/d-cycles.

(7) Fix o a product of d disjoint n/d-cycles, compute the character of this action at o.
You might use the Euler ¢ function.

(8) Compute the Frobenius characteristic of W, as

1
ch W, = — > (n/d)p 4
din

(9) By summing over all n and over d dividing n, and setting k = n/d, conclude the
formula for ch W above.

Exercises: Groupoid cardinality.
(10) What is the groupoid cardinality of the groupoid of all groups of order 47
(11) A finite group G acting on a finite set X yields a groupoid with object set X and
a morphism x — gz for every (g, x). Show that the cardinality of this groupoid is
[ X1/1G.

3E.g., using [CFGP19, Lemma 9.1].
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(12) This is an exercise on the number of degree d covering spaces of a fixed genus g
graph. Fix R, a graph with 1 vertex and g loopsﬁ
Consider the groupoid Cq 4 of “degree d covers of R,.” Precisely,
e objects are morphisms” G — R, where G is a graph and G — R, is a degree
d covering space when regarded as a map of CW complexes.
o for f: G — Ry and f': G’ — Ry, a morphism f — f’ is a commuting diagram

G5
]
Ry Ry

Show that

/ 1= (a7t
Ca,q

Example: the three isomorphism classes of objects in C3 1 are drawn below, with
6, 2, and 3 automorphisms respectively. Thus fc 1= % + % + % =1.

Nt

(&

|

S & o

« 000

-

(13) Consider now the groupoid éd,g of degree d covers of all roses with g petals. Pre-

cisely,
e Objects are morphisms G — R, where G is a graph, R is a graph that is
isomorphic to R,, and G — R is a degree d covering space when regarded as
a map of CW complexes.
e for f: G — Rand f': G — R, amorphism f — f’ is a commuting diagram

(e J=Nye

Jf Jf !

R R
Compute the groupoid cardinality of this groupoid.

4Rg is sometimes called a “rose with g petals.”
A morphism of graphs G = (V, H,i,r) — G' = (V',H’,i',7') is a pair of maps V — V' and H — H’
compatible with ¢, 4" and r,7’. That is, it sends vertices to vertices and edges to edges, preserving vertex-edge

incidence.
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APPENDIX B. EXERCISE HINTS AND SOLUTIONS

Hints, solutions: graphs and graph complexes.

(1) If G has parallel edges then [G, m,w] = 0 in G™. Hence, for any G that is covered
by triangles—meaning every edge is in a triangle—0[G, m, w| = OH

(2) The chain complex G%) should be rank 1, concentrated in degree 2.

(3) The chain complex G* should be rank 9 in degree 3 and rank 6 in degree 2.

Hints, solutions: Frobenius characteristics.

(4) Solution: ") JO §39509 9397 U0 Suryor UG {S9[dIId (T — u) Jo Uorun JuIofSI(]

Solution: “u|p 9wos 10J ‘sa[oAd-p urolSIp p/u Jo jonpoid e ore Jer) 9soy) A[0exX

(5)
(6) Solutfon’ (p(p/w)ip) /1w
(7) Solution: 1p(P/Wi(1 —p) - (p/u)p

Hints, solutions: Groupoid cardinality.
(10) Solution: /2

(11) This is the orbit-stabilizer lemma.
(12) Identify C4 4 as having the same groupoid cardinality asﬁthe groupoid whose objects
are
{(o1,...,04) 1 05 € Sa}
with a morphism (o71,...,04) = (to177%,...,70,771) for each 7 € Sy.
(13) Define a functor F': Cq 4 — Ry, where Ry is the groupoid of graphs isomorphic to
R,. Identify (F' | R,) with a familiar groupoid.
Solution:

'% st zomsue oy, “7P) 0 yuereambe st (57 1 .7)
=
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