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These are course notes for a second semester graduate algebra course taught at Brown
University.

Part 1. Some category theory

1. Category theory basics

Just like mathematics itself, a little bit goes a long way. Source: Riehl p. 3 (modern,
great, free), Maclane (old school).

Definition 1.1. A category C is

(1) a collection of objects X,Y, Z, . . .
(2) a collection of morphisms f, g, h, . . .
(3) for each morphism f a specification of objectsX and Y , called domain and codomain,

written f : X → Y ,
(4) for any pair f : X → Y and g : Y → Z, the specification of a morphism X → Z

denoted g ◦ f or gf ,

such that

• (associativity)
• (existence of identity), denoted 1X : X → X for each object X



COURSE NOTES FOR MATH 2520 GRADUATE ALGEBRA 3

Definition 1.2. A morphism f : X → Y is called an isomorphism if there is a g : Y → X
such that gf = 1X , fg = 1Y . An isomorphism X → X is called an automorphism.

Why collections? We are tiptoeing around set-theoretic issues e.g., Russell’s paradox in-
voking the set of sets. I will sweep all set-theoretic issues under the rug. But sometimes
we are safe:

Definition 1.3. A category C is called small if the collection of morphisms forms a set
(“only” a set’s worth of morphisms). Weaker, true of most examples of interest to us: C
is locally small if for all X,Y , the morphisms X → Y form a set, denoted MorC(X,Y ) or
C(X,Y ).

The objects of a small category then form a set too, since objects are in correspondence
with the identity morphisms. I am likely to talk about categories as if they were locally
small, without further mention.

Example 1.4. Discuss objects, morphisms, isomorphisms. The study of these categories
is set theory, linear algebra, group theory, topology. Can skip since Tom did examples

(1) Set, Ens
(2) Vectk
(3) Gp
(4) Top. Isomorphisms are homeomorphisms. Now homeomorphisms make more

sense!
(5) ComRing. Commutative rings. All my rings have identity element, but 0 ring is

not excluded. A morphism/homomorphism is a map f : R→ S with

f(r + r′) = f(r) + f(r′), f(rr′) = f(r)f(r′), f(1R) = f(1S)

(6) Fd. Fields. Here let us agree once and for all that a field is defined as a commutative
ring in which the nonzero elements form a group. Therefore, the 0 ring is not a
field. A morphism of fields is just a ring homomorphism in which source and target
happen to be fields.

Here are some more exotic examples close to my heart:

(6) A poset (P,≤) is a set P and a partial order ≤, meaning a binary relation satisfying
• x ≤ x,
• x ≤ y and y ≤ z implies x ≤ z,
• x ≤ y and y ≤ x implies x = y.

Examples: (Z,≤), (Z, divisibility). Draw a picture of Hasse diagram.

Then view (P,≤) as a category with objects P and a unique morphism x → y
whenever x ≤ y.

(7) Groupoids? Get a groupoid from any category by “erasing” non-isomorphisms.
(8) Special case of both: given any set S, regard S as category with objects elements

in S and only identity morphisms.
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(9) FI Finite sets, injections. Popular these days.

2. New categories from old.

Definition 1.5. Let C be a category.

(1) The opposite category Cop has same objects, and a morphism f∗ : X → Y for every
morphism f : X → Y in C, with composition

f∗ ◦ g∗ = (g ◦ f)∗

for f : X → Y, g : Y → Z. (“Reverse all arrows”)
(2) Slice category: for X an object, the category (C ↓ X) has objects resp. morphisms

Z
φ
��

X

Z //

φ
��

Z ′

φ′
��

X

(“Do everything above X.”) The coslice category (X ↓ C), with objects X → Z, is
defined analogously.

3. Initial and final objects

Definition 1.6. Initial, final. Zero object.

Example 1.7.

(1) Set has ∅ initial, singleton sets final.
(2) ComRing has Z initial, 0 final.
(3) AbGp has 0 initial and final, hence 0 is a zero object.

Remark 1.8. Initial (resp final) objects are unique up to unique isomorphism. What does
this mean? It means that given any two initial objects X,X ′, there is a unique isomorphism
X → X ′.

Proof. Prove it. �

I used to think that using this phrase was a sign of being uptight, but I’ve completely
changed my mind (or, maybe, I have become uptight). Example: When people say infor-
mally “There is a unique group of order three,” what do they really mean? They mean
“. . .up to isomorphism.” But there is a unique group of order three only up to nonunique
isomorphism. (Think.) Compare with: there is a unique group of order 2 up to unique
isomorphism.
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Example 1.9. You learned about the product X × Y in C. The product, if it exists, is
unique up to unique isomorphism: either argue this directly, or invoke that the product is
final in a particular category—which?

4. Functors.

Tom says he covered it, so just review/set notation.

Definition 1.10. Define (covariant) functor F : C → D: an object FX in D for each X
in C, and a morphism Ff : FX → FY for each f : X → Y in C, satisfying F (gf) = FgFf
and F1X = 1FX .

Then a contravariant functor from C to D is F : Cop → D.

Example 1.11. Fundamental group of a based topological space.

Example 1.12. Optional example: Let X a topological space. Define

Conf(X) : FIop → Top

Conf(X)({1, . . . , n}) = Confn(X) = Xn \ fat diagonals

(Should define slightly more generally, for S finite set.)

5. Adjoint pairs.

Consider the following:

“A a linear transformation V →W is freely specified by where it sends a basis of V .”

For example, let S a set (for example S = {v1, v2, v3}). Let

FreeVk(S) = {finite sums
∑

αs · s : αs ∈ k}

be the vector space over k freely generated by S. So S itself is a basis. Then saying a linear
map FreeV(S) → W is the same as saying a set map S → W , where W is the underlying
set of vectors of W . Notice FreeV is a functor from Set to Vectk.

In other words, consider the forgetful functor Vectk → Set sending a vector space W
to its underlying set W of vectors. Then given S a set and W a vector space,

MorVectk(FreeVk(S),W ) ∼= MorSet(S,W ).
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Definition 1.13. Let F : C → D and G : D → C be functors. Then (F,G) is an adjoint
pair if for every object X of C and Y of D, there is an isomorphism

MorD(FX, Y ) ∼= MorC(X,GY ),

which moreover is natural with respect to morphisms in C and morphisms in D.

Write down what this naturality means (commuting diagram). In practice, the naturality
is always fine.

Example 1.14.

(1) Free groups. More “free” constructions in HW.
(2) Many “minimally invasive” functors are adjoints to (fully faithful) inclusions. For

example: Say R is a domain, k a field. Then to give an injective map R → k is
to give a map Frac(R)→ k. Phrase this as an adjunction (one of the categories is
domains with injective maps.) Think of Frac like a minimally invasive way to make
R into a field.

Please treat the rest of the class as an “adjoint pair scavenger hunt.”

6. Limits, colimits

First, we are often interested in diagrams, say the following kind of diagram of commu-
tative rings:

A1
//

��

A2

A3

.

It will be conceptually useful to break this data into two parts: the shape of the diagram,
and the actual objects/maps, e.g., let I be the category

•1 //

��

•2

•3

,

then a diagram of rings as in the above is simply a functor R : I → ComRing.

Definition 1.15. A diagram in a category C indexed by a (small) category I is simply a
functor A : I → C. May write Ai := A(i) for i ∈ I.

Example 1.16.
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(1) A commutative square in C is a functor to C from the poset I drawn below.

• //

�� ��

•

��
• // •

• //

��

•

��
• // •

(All the nonidentity morphisms of I are drawn on the left; in particular going
around the upper-right is the same as going around the lower-left. Typically one
omits the diagonal arrow from the drawing, as on the right.)

(2) A sequence A1, A2, . . . of objects in C is a functor Z>0 → C. (Recall that we can
regard a set as a category having only identity morphisms).

Definition 1.17. The limit of a diagram A : I → C is an object of C, denoted lim
←I

Ai,

together with a morphism

lim
←I

Ai

fi
��

Ai

for each i ∈ I, such that

• for all arrows j → k in I the diagram below commutes,

lim
←I

Ai

fi
��

fj
��

Aj // Ak

and moreover,
• lim
←I

Ai is final with respect to this property. (Write out what that means.)

So limits, if they exist, are automatically unique up to unique isomorphism.

Example 1.18. The first three examples have indexing category I = · · · → • → • → •.
(1) Recall the ring of formal power series R[[x]] over ring R has elements

{r0 + r1x+ r2x
2 + · · · : ri ∈ R}.

It is the limit

R[[x]]

···
�� && ++

· · · // R[x]/(x3) // R[x]/(x2) // R[x]/(x)



8 M. CHAN

(2) Ring of p-adics for fixed prime p

Zp

···
�� $$

))
· · · // Z/p3Z // Z/p2Z // Z/pZ

These are both examples of I-adic completions, see [AM69, Ch. 10].
(3) A wackier example: a diagram I → (R,≤) is a sequence of reals weakly decreasing

to the left. The limit, if it exists, is exactly the infimum.

0

···
�� ""

((
· · · // 1/8 // 1/4 // 1/2

(4) The product X × Y in C, if it exists, is the limit of the diagram

X Y

Here, the indexing category is simply • •.
(5) In this example I assume the definition of a graded ring. The ring of symmetric

functions Λ is defined to be the limit, in the category of graded rings,

Λ

···
�� ((

++
· · · // Z[x1, x2, x3]S3

p3
// Z[x1, x2]S2

p2
// Z[x1]S1

of the rings of symmetric polynomials. Here the maps pi send xi 7→ 0.

Exercise 1.19. Let Λd denote the subgroup of Z[[x1, x2, . . .]] of homogeneous degree
d power series that are invariant on permuting the variables xi. Then Λ is the
graded ring

Λ =
⊕
d≥0

Λd.

The ring of symmetric functions is of central interest in algebraic combinatorics.

Definition 1.20. Dually, define the colimit of a diagram A : I → C, denoted lim
→I

Ai.

Example 1.21. Coproducts. For example, the coproduct of a bunch of sets {Xi}i∈I is
the disjoint union ∐

i∈I
Xi := {(x, i) : i ∈ I, x ∈ Xi.}
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Limits and colimits are formally completely symmetric, but fairly often in practice they
have different feels to them. Limits often have the feel of some thing combining all of the
increasing complexity of the things in the diagram, and colimits often feel like some kind
of side-by-side gluing (give a topological example of a diagram of spaces: gluing two sheets
of paper together along an edge.)

Confusingly,

• Limits are also called inverse limits or projective limits.
• Colimits are also called direct limits.

Precisely because of this confusion, and following the conventions of [?], we will stick with
limit and colimit only.

7. RAPL, LAPC

These two statements are unreasonably useful, especially in proportion to how hard they
are to prove:

Right adjoints preserve limits, left adjoints preserve colimits.

Please share a good mnemonic device, mathematical or otherwise, with me and the class.

Proof. Let us prove RAPL. Let (F : C → D, G : D → C) be an adjoint pair, and A : I → D
a diagram in D, with limit Y = lim

←I
Ai. Then we claim

GY = lim
←I

GAi.

First we note that the object comes equipped with suitable maps to GAis:

Y

··· fi
��

fj

  

· · · // Ai // Aj

GY

··· Gfi
��

Gfj

##

· · · // GAi // GAj

Now let’s test the supposed universal property of GY . Suppose an object X of C comes
along, equipped with suitable maps to the GAi. We need to find a map X → GY making
everything in the right hand diagram commute.

FX

��

�� ��

Y

··· fi
��

fj

!!

· · · // Ai // Aj

X

�� ��

GY

··· Gfi
��

Gfj

##

· · · // GAi // GAj
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Exercise 1.22. Find the desired arrow X → GY by finding an appropriate arrow FX → Y
using the universal property of Y , and using the identification

MorC(X,GY ) ∼= MorD(FX, Y ).

(The naturality of these identifications must come into play.)

�

8. Natural transformations

Definition 1.23. Let F,G : C → D be functors. A natural transformation Φ: F ⇒ G is:

• for every X in C, an arrow ΦX : FX → GX in D, such that

for every arrow f : X → X ′ in C, the following square commutes.

FX

Ff
��

ΦX // GX

Gf
��

FX ′
ΦX′ // GX ′

Convince yourself that natural transformations may be composed. Thus functors Fun(C,D)
are the objects of a category whose morphisms are natural transformations. Say Φ: F ⇒ G
is a natural isomorphism if it is an isomorphism in this category.

Exercise 1.24. Check that Φ is a natural isomorphism if and only if all ΦX are isomorphisms.

Example 1.25. (The determinant, from Maclane) We have

GLn, (−)∗ : ComRing→ Gp,

two ways to make groups out of commutative rings. Then det : GLn ⇒ (−)∗ : is a natural
transformation.

Example 1.26. [?, Example 1.4.3] Consider the identity and double dual endofunctors1

Id, (−)∗∗ : Vectk → Vectk. There is a natural transformation

ev : Id⇒ (−)∗∗

given by: evV : V → V ∗∗ is the linear map v 7→ evv : V ∗ → k. In other words, given a linear
map V →W with v 7→ w, the following diagram commutes.

V

��

// V ∗∗

��

W // W ∗∗

v_

��

� // evv_

��
w � // evw

1A functor from a category to itself.
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Exercise 1.27.

(1) In fact ev can be restricted to a natural transformation Id⇒ (−)∗∗ of endofunctors
on the category FdVectk of finite dimensional vector spaces over k. Then ev is a
natural isomorphism.

(2) On the other hand, there is no natural transformation Id⇒ (−)∗. (Good to think
about.)

9. Equivalence of categories

Make up a definition of isomorphism of categories; it is probably right. But surprisingly
the notion of isomorphism of categories is often too rigid. An equivalence of categories is
more useful:

Definition 1.28. An equivalence of categories between C and D is a pair of functors

F : C → D, G : D → C
together with natural isomorphisms GF ' 1C and FG ' 1D.

The following equivalent characterization of equivalence of categories is useful:

Proposition 1.29. A functor F : C → D defines an equivalence of categories if and only if it
is full, faithful, and essentially surjective.

(Make sure we know what those three things mean!)

Proof. Try it as an exercise. �

Example 1.30. Skeleton of a category, e.g., skeleton of the category of finite sets.

10. Yoneda lemma

“An object can be remembered by the totality of morphisms it receives.”

Or, in the memorable words of an undergraduate when I gave an UG talk on Yoneda: You
are what you eat!

Let C be a locally small category. Then every object X of C defines a functor

hX : Cop → Set

given on objects by hX(Y ) := MorC(Y,X), and on morphisms as follows: given f : Y → Y ′

there is a natural map − ◦ f : MorC(Y
′, X)→ MorC(Y,X).

In this way we get a functor

h : C → Fun(Cop,Set)
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sending X to hX . The following result says that X can be represented by hX .

Theorem 1.31. Yoneda embedding. The functor h is fully faithful.

(If necessary, review the definition of full and faithful.)
Actually, the full statement of Yoneda’s lemma is as follows (see [?, Theorem 2.2.4]).

Theorem 1.32. Let C be locally small. Given a functor F : Cop → Set and any object
X in C, there is a natural bijection between natural transformations hX ⇒ F and FX,
sending a natural transformation Φ: hX ⇒ F to the image under ΦX : hX(X) → FX of
1X . Naturality of the bijection means natural in X and F .

Functors Cop → Set in the essential image of h, i.e., that are isomorphic to hX for
some object X, are called representable. In algebraic geometry we often have functors of
geometric interest, and one wants to study whether the functor is representable. Ideally it
is, but if not, one studies the various functors Cop → Set of interest anyways, viewed as
living “just outside” the category C via the Yoneda embedding.

Example 1.33. Power set functor P : Setop → Set sending S to P(S) = 2S . Is this
representable? Actually the notation 2S is suggestive. . .

Example 1.34. Families of oriented vs. unoriented segments.

11. Reminder: modules

Before we do abelian categories, let us remind ourselves of modules over a commutative
ring R, which are the primary example.

An R-module is, basically, an abelian group M with an action of R on it. I find it hard
to remember all the different compatibilities that are required, so let’s derive it as follows.

First, if M is an abelian group, the endomorphisms End(M) naturally form a (not
typically commutative) ring: if f, g : M →M are two such, then f + g : M →M is defined
as (f + g)(x) = f(x) + g(x), and fg = f ◦ g is the composition.

Definition 1.35. Then an R-module is an abelian group M together with a ring homomor-
phism R→ End(M).

Exercise 1.36. Write out what that amounts to.

This is a “plug and play” definition of a module. Regard End(M) as a USB port in M
which is ready to receive a ring R.

Example 1.37.

(1) A Z-module is exactly an abelian group, because giving a map Z→ End(M) is to
give no additional data at all. (Recall Z is initial in Ring.)
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(2) A k-module is a vector space over k.
(3) (Dropping the requirement that R is commutative) Recall the group ring k[G],

whose elements are finite k-linear combinations of group elements. A k[G]-module
is exactly a vector space V with a G-action on it, that is, V together with a group
homomorphism G→ GL(V ).

12. Towards abelian categories

The source is [?, §1.4] of Vakil; basically there are some things that are true of modules
that will be automatically true in arbitrary abelian categories, so we may as well. First we
define kernels and cokernels. Then we define additive categories, and abelian categories.
(Possibly recall the definitions of kernel and cokernel in R-mod.)

Definition 1.38. Let C be any category with a zero object 0. The kernel of a morphism
f : B → C, if it exists, is a morphism i : A → B such that the following is a pullback
diagram:

A

��

i // B

f
��

0 // C

What does this mean? First, that fi = 0. (What is meant by the 0 map between any
two objects? It is the unique morphism ∗ → 0 → ∗.) Second, that if i′ : A′ → B is any
other arrow with fi′ = 0 then i′ factors uniquely through i.

Definition 1.39. Similarly, the cokernel of a morphism i : A → B is f : B → C if the
diagram above is a pushout.

Definition 1.40. An additive category is a locally small category A together with the
structure of an abelian group on each MorA(X,Y ) such that composition distributes over
addition, ie

f(g + g′) = fg + g′, (f + f ′)g = fg + f ′g,

and such that in addition

(1) A has a zero object,
(2) A admits finite products and coproducts X × Y and X ⊕ Y .

Remark 1.41. In fact, X × Y = X ⊕ Y . Actually, it is enough to require the existence
of one of these, say finite products; then prove that the finite product also functions as
coproduct. Or vice versa.
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Exercise 1.42. In an additive category, the additive identity in the abelian group MorC(X,Y )
is exactly the morphism X → 0 → Y . We henceforth denote this morphism 0 unambigu-
ously.

Definition 1.43. Monomorphisms, epimorphisms in an arbitrary category. An arrow f : x→
y is monic if fg = fg′ implies g = g′. Epic if hf = h′f implies h = h′.

Exercise 1.44. In an additive category, kernels are monic and cokernels are epic.

Now here is the key definition of the setting in which a lot of homological algebra takes
place.

Definition 1.45. An abelian category is an additive category A such that

• Every morphism has a kernel and cokernel,
• Every monic in A is the kernel of its cokernel, and
• Every epi in A is the cokernel of its kernel.

By the previous exercise, conclude that in an abelian category, monic = “is a kernel” and
epic = “is a cokernel.”

Example 1.46. The main example of an abelian category is that of R-modules. In some
sense2 this is the only example.

Example 1.47. The category ShX of sheaves of abelian groups on a topological space X,
which you learn more about in algebraic geometry for example.

Now we can define the image of an arbitrary morphism f : A→ B in an abelian category
A: it is the kernel of the cokernel of f . So:

A

!!

f
// B

g
// cok f

ker g

==

Of course, in the category of R-modules we have im(f) = {f(a) : a ∈ A}, with the canonical
inclusion into B, as usual.

Remark 1.48. In case the asymmetry of the above bothers you: one could define the coimage
of f to be cok(ker(f)). Then it is true, but this is not easy to prove, that the dotted arrow

2Freyd-Mitchell embedding theorem: every locally small abelian category admits a fully faithful, exact
functor into R-mod for some possibly noncommutative R.
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above is the coimage. In other words, there is a commutative diagram

ker f

��

e // A
f

//

��

B
g
// cok f

0 // coim f
∼=

im f

OO

// 0

OO

where the first and last squares are pullback-pushout squares and the dotted arrow is a
unique isomorphism. This provides a canonical identification of coim f and im f and a
unique-up-to-unique isomorphism factorization of an arbitrary morphism f as

A
epic−−→ C

monic−−−→ B,

where C is precisely the image = coimage.
We will take this as true (it IS true!) from now on.

Definition 1.49. A diagram

A
f−→ B

g−→ C

is exact at B if ker g = im f . Say a sequence

· · ·Ai−1 → Ai → Ai+1 → · · ·

is exact if it’s exact everywhere.

To be very precise, ker g and im f are morphisms to B, unique up to unique isomorphism.
(Like everyone else, we will soon stop being so precise and just refer to the objects and not
the morphisms to B.) In light of the previous remark, this is equivalent to cok f = coim g.

Exercise 1.50.

(1) A sequence 0→ A
f−→ B

g−→ C is exact iff f is the kernel of g.

(2) A sequence A
f−→ B

g−→ C → 0 is exact iff g is the cokernel of g.

Proof. For (1): Exactness at A means ker f = 0, so A = coim f = im f = ker g by exactness
at B. (2) is analogous. �

Definition 1.51. A covariant (additive) functor F : C → D on abelian categories is called
left exact if. . . A contravariant functor F : C → D is called left exact if

A→ B → C → 0

exact in C implies

0→ FA→ FB → FC

is exact. Similarly for right exact. Say F is exact if both left/right exact.
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Implicit in all this is the claim that an additive functor, i.e., one respecting the group
structure on hom-sets, takes 0 to 0. (Proof: show that the zero object Z is characterized
by 0Z = 1Z ∈ Mor(Z,Z).)

Let’s collect the following useful statement:

Proposition 1.52. Right adjoints are left exact. Left adjoints are right exact.

Proof. That is, if (F : C → D, G : D → C) are an adjoint pair of additive functors on abelian
categories, then F is right exact and G is left exact. We have basically already proved all
the parts of this. Namely, F , being a left adjoint, preserves colimits, in particular cokernels.
As noted above this exactly means that F is right exact. Similarly for G. �

For example, let’s go and prove almost everything in A&M about tensor products of
modules, without knowing anything except their defining property: there is a natural
isomorphism of R-modules

Hom(M ⊗N,P ) ∼= Hom(M,Hom(N,P )).

Believe it? Given φ : M → Hom(N,P ), write φm = φ(m) : N → P . then φ defines a
map (of sets, so far)

Φ: M ×N → P, (m,n) 7→ φm(n)

which satisfies:

(1) φm : N → P is R-linear for each m:

Φ(m,n+ n′) = Φ(m,n) + Φ(m,n′),Φ(m, rn) = rΦ(m,n)

(2) φ itself is R-linear:

Φ(m+m′, n) = Φ(m,n) + Φ(m′, n), rΦ(m,n) = Φ(rm, n)

(Please study the construction of tensor products if it is unfamiliar. I probably won’t
do it, since I am mostly trying to avoid it as a “crutch,” unless I feel I really need to.)
Therefore:

−⊗N and Hom(N,−) are an adjoint pair of functors R-mod→ R-mod.

Corollary 1.53. − ⊗ N , being a left adjoint, preserves colimits. In particular it preserves
cokernels, i.e., is right exact.

Corollary 1.54. Hom(N,−), being a right adjoint, preserves limits. In particular it pre-
serves kernels, i.e., is left exact.

In general, measuring failure of a left exact/right exact functor to be exact gives rise to
derived functors. (I have not decided whether to cover that topic—maybe not.)

The situations in which − ⊗ N , respectively Hom(N,−), happen to be exact, for a
particular N , are also interesting, and get special names:
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Definition 1.55. Modules N for which −⊗N is an exact functor are called flat. Modules
N for which Hom(N,−) is an exact functor are called projective.

Other standard properties of tensor products, which we read in A&M, can “immediately”
be deduced:

Exercise 1.56. We have canonical isomorphisms

(1) R⊗M ∼= M .
(2) M ⊗ (

⊕
i∈I Ni) ∼=

⊕
i∈I(M ⊗Ni)

(3) M ⊗ (N ⊗ P ) ∼= (M ⊗N)⊗ P

Proof. Prove these, using universal properties and Yoneda as needed, but without referring
to the construction of tensor products �

An aside: What about Hom(−, P ) : R-modop → R-mod? It turns out to be self right-
adjoint:

Definition 1.57. Say functors F : Cop → D and G : Dop → C are mutually right-adjoint of
for all X in C and Y in D we have natural correspondences

MorD(Y, FX) ∼= MorC(X,GY ).

Exercise 1.58.

(1) Given F and G as above, define an appropriate opposite functor Gop : D → Cop

from G. Then deduce that F and G are mutually right adjoint iff (Gop, F ) is an
adjoint pair of functors D 
 Cop. (Equivalently, iff (F op, G) is an adjoint pair of
functors C 
 Dop.)

Conclude that if F and G are mutually right-adjoint then they preserve all limits.
(2) Define mutually left-adjoint contravariant functors, and redo all of the above.

Returning to the case of R-modules now, the natural identification

Hom(M,Hom(N,P )) ∼= Hom(N,Hom(M,P ))

(after all, both are Hom(M ⊗N,P ) = Hom(N ⊗M,P )) quickly shows that Hom(−, P ) is
self right-adjoint, hence preserves limits, hence preserves kernels, i.e., is left-exact.

Definition 1.59. An R-module P is called injective if Hom(−, P ) is exact.

Part 2. Some commutative algebra

There are a few more topics related to tensors that will be useful to us. Note: at this
point I may need to review the construction of tensor product.
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13. Extension, restriction of scalars

An R-algebra is a morphism R→ S of rings; morphisms are commuting triangles.
Now given f : R → S, there are natural ways to turn R-modules into S-modules and

vice versa, called extension and restriction of scalars. Let’s start with the easier one:

Definition 2.1. Given N an S-module, we have a natural R-module structure on N called
its restriction to R, by defining r ·n = f(r) ·n. Another way to say it is via the composition

R
f−→ S → End(N).

A special case of restriction of scalars is when N = S. In other words, an R-algebra is
naturally an R-module.

Definition 2.2. Given M an R-module, consider the R-module S⊗RM, where S is regarded
as an R-module as above. Then notice that S ⊗RM can be regarded as an S-module, via

s · (s′ ⊗m) = ss′ ⊗m,
and this S-module is called the extension of N .

Example 2.3. Possibly draw a picture for Z2 ⊗Z R = R2 as an R-module.

Exercise 2.4. (Extension, Restriction) are an adjoint pair.

14. Tensor product of R-algebras

Define it and state universal property. We follow [AM69, p. 30].
Let f : A→ B, g : A→ C be two A-algebras. Let D = B⊗AC, an A-module. We make

it an A-algebra by defining a multiplication on D: the A-multilinear map

B × C ×B × C → D, (b, c, b′, c′) 7→ bb′ ⊗ cc′

induces an A-linear map
B ⊗ C ⊗B ⊗ C = D ⊗D → D,

which induces an A-bilinear map D ×D → D given on pure tensors by

(b⊗ c, b′ ⊗ c′) 7→ bb′ ⊗ cc′.
This gives a multiplication on D; check that D becomes a commutative ring, which fur-
thermore has the structure of an A-algebra on D via a 7→ f(a)⊗ g(a).

Proposition 2.5. State universal property.

Proof. Omitted. �



COURSE NOTES FOR MATH 2520 GRADUATE ALGEBRA 19

15. Free modules

Let R be a ring, as usual assumed to be commutative unless I state otherwise. Recall that
a free module overR is a module isomorphic toR(I) := ⊕i∈IR. (The “usual” exercise at this

point: formulate the construction ofR(I) from a set I as a left adjoint to a forgetful functor.)
So a finitely generated free module is isomorphic to Rn. Note An⊗AB = (A⊗AB)n = Bn

(tensor commutes with colimits), so extension of scalars of a free module is a free module.
Then note that the rank of a free module is well-defined:

Exercise 2.6. (This is an exercise in A&M). Suppose R 6= 0. If m and n are numbers with
Rm ∼= Rn then m = n.

Proof. Pick a maximal ideal m of R (using exactly that R 6= 0.), so R/m = k is a field.
Obtain

R/m⊗R Rm ∼= R/m⊗R Rn

which becomes km ∼= km as k-modules (vector spaces). Done by linear algebra. �

16. Finitely generated modules

One way to describe the condition of an R-module M being finitely generated is: M is
finitely generated iff it admits a surjection of R-modules

φ : Rn →M.

Indeed, a map is given by ei 7→ mi, with image {
∑n

i=1 rimi : ri ∈ R}. Then φ is surjective
iff the xi’s generate M .

Definition 2.7. M is called finitely presented if it fits in an exact sequence

Rm → Rn →M → 0.

In many cases (but not all!) fg and fp are the same, e.g. in the case of Noetherian rings.
Below the reference is [AM69, §6]:

Definition 2.8. Say a module is Noetherian if every submodule is finitely generated.

For example, a ring is Noetherian iff every ideal is finitely generated.

Lemma 2.9. Given a short exact sequence of R-modules

0→M ′
f−→M

g−→M ′′ → 0,

we have that M is Noetherian iff M ′ and M ′′ are Noetherian.



20 M. CHAN

Proof. If M Noetherian, then so is M ′, since submods of M ′ are submods of M . And
so is M ′′, since submods of M ′′ lift to submods of M , and generators in the latter give
generators in the former.

Conversely, suppose M ′ and M ′′ are Noetherian, and let N ⊆M be a submodule. Then
N ′ = f−1(N) is a f.g. submodule of M ′, and g(N) = N ′′ is a f.g. submodule of M ′′. Given
generators x1, . . . , xa ∈ N ′ and given y1, . . . , yb ∈ N whose images generate N ′′, check
f(x1), . . . f(xa), y1, . . . , yb generate N . �

Corollary 2.10. If R is a Noetherian ring then Rn is a Noetherian module.

Proof. Induction, e.g., 0→ R→ R2 → R→ 0 shows it for R2. �

Corollary 2.11. A finitely generated module over a Noetherian ring is Noetherian.

Proof. Such a module is a quotient of some Rn, hence Noetherian since Rn is. �

Hence, for example, fg modules over Noetherian rings are finitely presented:

0→ ker→ Rn →M → 0

with ker finitely generated.

17. Jacobson radical

Let R be a ring. Recall nilradical, and define Jacobson radical as the intersection of
all maximal ideals. So the Jacobson radical contains the nilradical (the nilradical is the
intersection of more ideals.) Another characterization of Jac(R) is:

Proposition 2.12. (See [AM69, Proposition 1.9]) We have

Jac(R) = {x ∈ R : 1− xy ∈ R∗ for all y ∈ R.}

Proof. It is helpful to first remind ourselves that an element of R is a unit iff it is in no
maximal ideals.

Say x ∈ Jac(R). Then xy is in all maximal ideals so 1− xy is in none.
Now say x 6∈ Jac(R), meaning it fails to be in some maximal ideal m. Then (x)+m = (1)

implies 1 = xy +m for some m ∈ m and some y. So 1− xy ∈ m is not a unit. �
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18. Cayley-Hamilton theorem and Nakayama’s Lemma

We follow [AM69, p. 21]. It will be helpful to observe:

Remark 2.13. An A[t]-module M is exactly an A-module M together with an A-linear
map φ : M →M . Then an A[t]-module map ρ : M →M is exactly an A-linear map ρ that
commutes with φ.

(Do you agree? Recall that an A-linear map is simply a morphism of A-modules.)

Theorem 2.14. Let M be a finitely generated A-module, say generated by x1, . . . , xn ∈M .
Let φ : M →M be an A-linear map which may be represented by a matrix B ∈ An×n with
respect to the generators x1, . . . , xn.

Then φ is a zero of the characteristic polynomial

det(B − tI) ∈ A[t].

Remark 2.15. In general, if φ is an A-linear map, it can be represented likely in many
different ways as an n×n matrix with respect to fixed generating set, and furthermore not
all n× n matrices represent A-linear maps of M .

Proof. Regard M as an A[t]-module, where t · x = φ(x). Then φ : M → M is a morphism
of A[t]-modules, that can be represented both by B and tI; these are n× n matrices over
A[t]. Therefore B − tIn represents the 0 endomorphism of M . Multiplying on the left by
the adjugate matrix of B − tIn yields that char(t) := detB − tIn ∈ A[t] acts as 0 on each
xi, in other words, is the 0 endomorphism of M . In other words char(φ) = 0 ∈ EndM .

�

Corollary 2.16. ([AM69, Proposition 2.4] Let M be a finitely generated A-module, and let
φ : M → M be an A-linear map such that φ(M) ⊆ IM for some ideal I ⊆ A. Then φ
satisfies an equation of the form

φn + a1φ
n−1 + · · ·+ an = 0 ∈ EndA-mod(M)

for some ai ∈ I, in fact ai ∈ Ii.

Proof. This would follow from the previous proposition if we could show that φ can be
represented by a matrix all of whose entries are in I. Do you agree?

Since φ(M) ⊆ IM by hypothesis, we need only show: given an element x ∈ IM , can we
write x =

∑
bixi for some bi ∈ I? This seems very plausible.

Yes: write
x =

∑
aiyi, ai ∈ I.

Now each yi is expressible as an R-linear combination of the generators xi, so expand
everything and collect terms. �
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Corollary 2.17. [AM69, Proposition 2.5] Let M be a finitely generated A-module, I ⊆ A
an ideal with IM = M . Then there exists x ∈ R such that x− 1 ∈ I and xM = 0.

Remark 2.18. Equivalently, by letting i = 1 − x, there exists i ∈ I such that im = m for
all m ∈M . I learned this helpful mnemonic from reading Math Overflow:

IM = M implies im = m,

again with hypothesis that M is finitely generated.

Proof. Let φ = 1: M →M . The previous result implies

1 + a1 + · · ·+ an = 0 ∈ EndM,

for some ai ∈ I. So x = 1 + a1 + · · ·+ an satisfies xM = 0. �

Lemma 2.19. (Nakayama’s Lemma) Let M be a finitely generated A-module and I ⊆
Jac(R) an ideal. Then IM = M only if M = 0.

Proof. By the mnemonic device, there exists i ∈ I such that im = m for all m ∈ M . By
the characterization of Jacobson radical, 1− i · 1 = 1− i ∈ R∗, so

u(1− i)m = 1 ·m = m.

On the other hand, (1− i)m = m−m = 0, thus M = 0.
�

It is a bit difficult to internalize Nakayama’s Lemma. Here’s a useful case of it: Let
(R,m) be a local ring, k = R/m its residue field. Let M be a finitely generated R-module.
Then M/mM is an R/m-module, i.e., a k-vector space, of finite dimension, since generators
of M descend to generators of M/mM .

Then the next proposition claims that a spanning set of M/mM can be lifted to a
generating set of M . Precisely:

Proposition 2.20. With (R,m) a local ring and M a finitely generated R-module as above,
suppose x1, . . . , xn ∈M are such that x1, . . . , xn span the vector space M/mM . Then the
xi generate M .

Proof. Consider N = 〈x1, . . . , xn〉 ⊆ M : we wish to show M/N = 0. Now m · (M/N) =
(mM +N)/N by an isomorphism theorem.3 But mM +N = M by assumption.4 Thus

m(M/N) = M/N,

so M/N = 0 by Nakayama. �

3Think it through: the left hand side consists of expressions of the form
∑
xi(mi+N) for xi ∈ m,mi ∈M .

4“The xi’s generate M up to adding mM .”
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19. Localization of rings

Definition 2.21. Recall here the definition of a multiplicative subset S ⊆ R. The localization
S−1R of R along S, the ring given by

S−1R = {(r, s) : r ∈ R, s ∈ S}/∼,
with the equivalence relation ∼ defined as follows. Write r/s = (r, s) for psychological
convenience; then we declare r/s ∼ r′/s′ iff u(rs′− r′s) = 0 for some u ∈ S. We check that
this is an equivalence relation, and define addition and multiplication to produce a ring
structure on S−1R.

There is a natural ring homomorphism φ : R → S−1R sending r 7→ r/1. In general, φ
may not be injective. For example S−1R can be the zero ring:

Exercise 2.22. Prove that S−1R = 0 iff 0 ∈ S.

Proposition 2.23. State the universal property.

Example 2.24. Examples of localizations.

(1) If f ∈ R, define
Rf = S−1R

for S = {1, f, f2, f3, . . .}. Subexample: if R = Z and f = 2 then we obtain the
dyadics.

(2) If p ⊂ R prime then define
Rp = S−1R

for S := R \ p; note S is multiplicative (do you agree?). Subexample: say R =
k[x, y], and p = (x, y). Then Rp is the ring of rational functions defined at the
origin, i.e.

Rp =

{
f(x, y)

g(x, y)
: g(0, 0) 6= 0

}
.

20. Localization of modules

Let S ⊂ R be a multiplicative subset, and M an R-module. We wish to define the
localization S−1M of M , which shall be an S−1R-module. It can be done in two ways:

Definition 2.25. Explicitly, let

S−1M = {m/s : m ∈M, s ∈ S}/ ∼
where m/s ∼ m′/s′ iff t(s′m − sm′) = 0 for some t ∈ S. Define addition m/s + m′/s′ =
(s′m+sm′)/ss′ and multiplication by elements of S−1R; check addition is well-defined and
that we obtain an S−1R-module structure.
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Definition 2.26. Or, use extension of scalars to simply define

S−1M := M ⊗R S−1R,

Exercise 2.27. Prove these two definitions are the same.

The second definition is useful to know, since we already know some things about tensor
products. In particular, we automatically see that S−1 : R-mod→ S−1R-mod is a functor:
it’s exactly −⊗R S−1R, a special case of extension of scalars.

Notation. Let M be an R-module. The notation from localizations of rings carries over:
if f ∈ R then we write

Mf = M ⊗R Rf ,
and if p ⊂ R is a prime ideal then we write

Mp = M ⊗R Rp
for the localizations.

Proposition 2.28. Localization is exact. That is, S−1R is a flat R-algebra. That is,

S−1R⊗R − : R-mod→ S−1R-mod

is an exact functor.

Proof. We already know it’s right exact, being a tensor product. Now if φ : M ′ → M is
injective, we want to show S−1φ : S−1M ′ → S−1M to be injective. Given m′/s ∈ S−1M ′,
suppose φ(m′)/s = 0. Then 0 = tφ(m′) = φ(tm′), so tm′ = 0 by injectivity of φ. So
m′/s = 0. �

21. Ideals in the localization.

(This is [AM69, Proposition 3.11]) How do the ideals of S−1A relate to the ideals of
A? (One could reasonably ask the same thing about modules: how do the submodules of
S−1M relate to those of M? Try to generalize everything below to localizing modules.) It’s
plausible that S−1A could have fewer ideals, since more things are units. For an extreme
example, consider fraction fields of integral domains, e.g., Z ⊂ Q. These are special cases
of localizations: along the multiplicative subset of nonzero elements.

Let φ : A→ S−1A denote the map a 7→ a/1.

Proposition 2.29. Let J ⊂ S−1A be an ideal. Then Jce = J .5 Therefore J 7→ Jc is an
injection from ideals of S−1A to ideals of A.

5Establish contraction, extension notation.
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Proof. We always have Jce ⊆ J . (Why? φ(Jc) is certainly contained in J , so Jce is also
contained in J .) On the other hand, if a/s ∈ J , then also a/1 = s/1 · a/s ∈ J , so a ∈ Jc
and a/1 ∈ Jce, and hence a/s = a/1 · 1/s ∈ Jce. �

So then, which ideals of A arise as contracted ideals?

Proposition 2.30. Let I ⊆ A. Then I is a contracted ideal iff for all s ∈ S and a ∈ A,
sa ∈ I only if a ∈ I. (This is pronounced “no element of S is a zerodivisor in A/I.”)

Proof. First of all, from the previous proposition, if I = Jc is a contracted ideal then
Iec = Jcec = Jc = I, using that Jce = J as previously established. Conversely, if Iec = I
then certainly I is a contracted ideal (it’s the contraction of its extension). So we have
that I is contracted iff Iec = I.

Suppose sa ∈ I but a 6∈ I; think of this like “I gets bigger when s is declared a unit,”
which makes it plausible that I can’t be a contracted ideal. Indeed, we have sa/1 ∈ Ie, so
a/1 ∈ Ie, so a ∈ Iec \ I.

Conversely, suppose that for all s, we have sa ∈ I only if a ∈ I. Think of this like
“I doesn’t get bigger when the elements of S are declared to be units,” which makes it
plausible that I = Iec. Now we’d better actually prove I = Iec: suppose a ∈ Iec; we wish
to show a ∈ I. Well, we have

a/1 ∈ Ie = {x/s : x ∈ I, s ∈ S}.
(Why is this the right description of Ie? Well, it is an ideal, and it is the smallest ideal
that contains all x/1 for x ∈ I.) So a/1 = x/s, so t(as− x) = 0 for some t ∈ S. This says
ts · a ∈ I, which implies a ∈ I. �

Corollary 2.31. The primes of S−1A are in (inclusion-preserving) correspondence with the
primes of A not meeting S.

(Make sure we agree that the inverse image of a prime is a prime.) For example, Ap is
always a local ring with maximal ideal pAp.

Think: “localizing at S gets rid of primes meeting S.” This will become quite important
when we associate to a ring A its prime spectrum, which is the set of prime ideals of A
together with a particular topology called the Zariski topology.

Proof. We are trying to establish that the image of the injective contraction map

{primes of S−1A} → {primes of A}
is exactly the primes of A not meeting S. Certainly a prime p of A that meets S can’t be
the contraction of its extension, since pe = (1).

On the other hand, if p is a prime of A that avoids S, then sa ∈ p only if a ∈ p by
primeness. So p = pec is a contracted ideal. Moreover

pe = {x/s : x ∈ p, s ∈ S}
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really is prime in S−1A: check this directly from the definitions. �

22. Local properties

Definition 2.32. Say M is locally P, for P some property, if Mp has property P for all
prime ideals p in R.

For example, the property of being locally free is interesting. Free implies locally free
(why?), but not conversely. Locally free modules are closely related to vector bundles, and
the fact that vector bundles are not all trivial but can have twists—picture the Moebius
band—is related to the fact that locally free modules that are not free exist. We can get
a first taste in the following example.

Example 2.33. Let R = R1 ×R2. What are the prime ideals p of R? Since

(1, 0) · (0, 1) = (0, 0) ∈ p,

we have, say, (1, 0) ∈ p so R1 × 0 ⊂ p. So p is of the form p = R1 × q2 for some q2 ⊂ R2:
after all, if (x, y) ∈ p then by adding an appropriate element of p, (anything, y) ∈ p. And
necessarily q2 is a prime ideal. As an exercise, check that

Rp ∼= (R2)q2 ,

which is plausible since the primes of R contained in p are exactly the primes of the form
R1 × something inside q2.

Similarly, we could have p = q1 ×R2 for q1 a prime of R1.
Now suppose M1 is an R1-module and M2 is an R2-module. Then both Mis may be

regarded as R-modules, and so also their direct sum M1 ⊕M2 is an R-module. Given a
prime p = R1 × q2, say, we have

(M1 ⊕M2)⊗R Rp = M1 ⊗R Rp ⊕M2 ⊗R Rp
but the first summand is 0, and the first summand is (M2)q2 .

This already suggests that locally P in general is not globally P, since localization can
allow you to focus on each Mi individually. For example, let R = k×k and let M = k2⊕k3

with R-action given coordinatewise: (a, b) · (v, w) = (av, bw). Then M isn’t free, but it is
locally free: let p = k × 0. Then Rp ∼= k and Mp

∼= 0⊕ k2.

The next proposition says “Locally 0 is globally 0.”

Proposition 2.34. Let M be an A-module. Then

M = 0 iff Mp = 0 for all primes p ⊂ A iff Mm = 0 for all maximal ideals m ⊂ A.
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Proof. Suppose 0 6= x ∈M . Then the annihilator ideal

Ann(x) = {a ∈ A : ax = 0}
is not the unit ideal: for example, it doesn’t contain 1. Therefore Ann(x) ⊆ m for some
maximal m, which exactly means x/1 6= 0 ∈Mm. �

From this, and from exactness of localization, we deduce that “locally injective is injec-
tive; locally surjective is surjective,” as follows:

Proposition 2.35. Let φ : M → N be a morphism of A-modules. Then TFAE:

(1) φ is injective;
(2) φp : Mp → Np is injective for all primes p of A;
(3) φm : Mm → Nm is injective for all maximal ideals m of A.

An analogous statement holds for “surjective.”

Proof. The exact sequence of A-modules

0→ ker(φ)→M
φ−→ N

yields, for each prime p, an exact sequence of Ap-modules

0→ ker(φ)p →Mp
φp−→ Np.

Now φ is injective iff ker(φ) = 0 iff ker(φ)p = 0 for all primes p iff φp is injective for all
primes p. (Same for just maximal ideals m.) �

An analogous proof, using cokernels, holds for local surjectivity.
Now we deduce that flatness is a local property. But first, “localization commutes with

tensor products:”

Proposition 2.36. [AM69, Proposition 3.7] Let M,N be A-modules, S ⊂ A a multiplicative
subset. There is a canonical isomorphism of S−1A-modules

S−1(M ⊗A N)→ S−1M ⊗S−1A S
−1N.

Proof. Shall we do it using universal properties? Let T be an arbitrary S−1A-module.
Then we have isomorphisms

HomS−1A-mod(S−1(M ⊗A N), T ) ∼= HomA-mod(M ⊗A N,T )
∼= HomA-mod(M,HomA-mod(N,T ))
∼= HomA-mod(M,HomS−1A-mod(S−1N,T ))
∼= HomS−1A-mod(S−1M,HomS−1A-mod(S−1N,T ))
∼= HomS−1A-mod(S−1M ⊗S−1A S

−1N,T ),

using repeatedly that

HomA-mod(X,T ) = HomS−1A-mod(S−1X,T )
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for X any A-module, by adjunction of extension and restriction of scalars. Now, if you
believe that all these identifications are natural, then we are done. �

Ideally, [AM69, Exercise 2.15] should be studied before proving the following lemma.

Lemma 2.37. Let f : A→ B. Let M be a flat A-module, and N a flat B-module.

(1) M ⊗A B is a flat B-module. (This is [AM69, Exercise 2.20])
(2) N is a flat A-module, supposing that B is a flat A-algebra.

Proof. For (1), the point is that for any B-module X,

X ⊗B (B ⊗AM) ∼= X ⊗AM
(It is worth thinking this through, using the bimodule structure of the LHS as in Exercise
2.15.)

For (2), if M ′ →M is an injection of A-modules, then

M ′ ⊗A B ⊗B N →M ⊗A B ⊗B N
is injective by flatness first of B and then of N . �

Proposition 2.38. Flatness is local. That is, if M is an A-module, then M is flat iff Mp is
flat for all primes p iff Mm is flat for all maximal ideals m.

Proof. First of all, if M is flat then Mp is flat: we just showed in the Lemma that the
extension of a flat module is flat. That is (1) implies (2), and (2) implies (3) is formally
true.

Now for (3) implies (1), say N ′ → N is an injective map of A-modules. We want to
show N ′ ⊗M → N ⊗M is injective. What we know is that N ′m → Nm is injective for all
maximals m, hence

N ′m ⊗Am Mm → Nm ⊗Am Mm

is injective for all maximals m, by flatness of Mm. Hence

(N ′ ⊗AM)m → (N ⊗AM)m

is injective for all m, hence N ′ ⊗AM → N ⊗AM is injective. �

Later on, we will understand flatness more geometrically.

23. Integral extensions

Let f : A→ B a ring homomorphism; commonly an inclusion of A ⊂ B.

Definition 2.39. An element x ∈ B is integral over A if it satisfies a monic polynomial over
A:

xn + f(a1)xn−1 + · · ·+ f(an) = 0 ∈ B
for some n > 0 and ai ∈ A.
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We’ll just write
xn + a1x

n−1 + · · ·+ an = 0,

viewing this as an equation in B, with A-module structure.

Example 2.40. f(A) integral over A: one may take a monic polynomial of degree 1.

Example 2.41. Z ↪→ Q. Are there any α ∈ Q integral over Z other than α ∈ Z?
Write α = r/s, (r, s) = 1. Then multiply both sides of

αn + a1α
n−1 + · · ·+ an = 0

by sn to obtain
rn + a1sr

n−1 + · · ·+ ans
n = 0

so s|rn so s = ±1, so α ∈ Z.

Example 2.42. In fact, for any unique factorization domain A, the only elements of FracA
that are integral over A are in A. Why? Well, the proof above works verbatim!

In fact the integral elements of B over A form a subring of B. I think this is not
really obvious: given x, y satisfying monic polynomials over A, how to cook up a monic
polynomial satisfied by x + y or xy? We’ll prove this after some supporting propositions,
starting with the following.

Let f : A→ B a ring homomorphism, and x ∈ B. Let

A[x] := im(A[t]→ B),

where t 7→ x; thus A[t] is the smallest sub-A-algebra of B containing x.

Proposition 2.43. [AM69, Proposition 5.1] TFAE:

(1) x is integral over A,
(2) A[x] is a finitely generated A-module,
(3) A[x] is contained in a subring C ⊆ B such that C is a finitely generated A-module,
(4) There exists a faithful A[x]-module M which is finitely generated as an A-module.

Definition 2.44. A faithful A-module M is one where A → End(M) is injective; so the
terminology is just like group actions: recall that a group action of G on a set X is faithful
if G→ Sym(X) is injective.

Equivalently, M is a faithful A-module iff its annihilator is trivial. In symbols, AnnM =
0, where AnnM = {x ∈ A : xM = 0}. This equivalence is an exercise.

Example 2.45. If f : A→ B is any ring homomorphism then B is faithful as an A-module
iff ker f = 0. After all, A→ End(B) factors as A→ B ⊂ End(B), with kernel ker f .
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Proof. (Proof of Proposition 2.43)
(1) implies (2): If x satisfies a monic polynomial of degree n, thenA[x] fg by 1, x, x2, . . . , xn−1:

just keep expanding xn = −(a1x
n−1 + · · ·+ an).

(2) implies (3): simply take C = A[x].

(3) implies (4): simply take M = C. Then C is a faithful A[x]-module, since A[x] is a
subring of it.

(4) implies (1): this is the key point: the Cayley-Hamilton theorem. We have an A-linear
map x : M →M sending m 7→ xm. Then by C-H,

xn + a1x
n−1 + · · ·+ an = 0

for some ai ∈ A, an equality of endomorphisms of M . But this means xn + a1x
n−1 + · · ·+

an = 0 as elements of A[x], because of faithfulness of M .
�

Corollary 2.46. Let f : A→ B and let x1, . . . , xn ∈ B integral over A. Then A[x1, . . . , xn]
is a finitely generated A-module.

Proof. Induction on n, with the base case n = 0 being clear (A is a fg A-module). For
the inductive step, suppose A[x1, . . . , xn−1] is a fg A-module; then xn is integral over
A[x1, . . . , xn−1] (it’s even integral over A). Then A[x1, . . . , xn−1, xn] is finitely generated
as an A[x1, . . . , xn−1, xn]-module, so also as an A-module.

(What we used is that if A→ A′ is a ring hom making A′ a fg A-module, and M is a fg
A′-module, then also M is fg as an A-module.) �

Corollary 2.47. Let f : A→ B a ring hom. The set C of elements over B that are integral
over A is a subring of B, called the integral closure of A in B.

Proof. Let x, y ∈ C; we just want to show x + y, x − y, xy ∈ C. Well A[x, y] is a subring
of B which is fg A-module as just shown; by (3) implies (1) we get that every element of
A[x, y] is integral over A. That includes x+ y, xy, etc. �

Definition 2.48. Define finite type, finite algebras.

So finite always implies finite type, but not conversely. A lot of the above discussion
may be summarized as

finite type + integral = finite

Proposition 2.49. Let f : A→ B. Then B is finite over A iff B is finite type and integral.



COURSE NOTES FOR MATH 2520 GRADUATE ALGEBRA 31

Proof. If B is finite over A, then B finite type, as already argued. Moreover B is integral
over A: any x ∈ B lives in a subring of B, namely B itself, fg as an A-module.

Conversely, if B is finite type, there exist x1, . . . , xn ∈ B with A[x1, . . . , xn] = B. Since
x1, . . . , xn is integral, B is a fg A-module, i.e., a finite A-algebra. �

Some basic properties, that integrality is preserved under quotients and localization,
shall be useful shortly:

Proposition 2.50. [AM69, Proposition 5.6] Let A ⊆ B rings, B integral over A.

(1) Then B/q is integral over A/qc, for q a prime of B.
(2) Let S ⊆ A be a multiplicative subset of A (and hence of B as well.) Then S−1B is

integral over S−1A.

(Make sure we agree that we have an inclusion S−1A ⊆ S−1B in the first place.)

Proof. (1): Write p = qc. Then in the proposition, we are considering the natural inclusion
A/p ⊆ B/q, sending a + p 7→ a + q. The point is that for any x + q ∈ B/q, an equation
xn + a1x

n−1 + · · ·+ an = 0 reduces mod q. (in particular the ai reduce to ai + q ∈ A/p.)
Similarly, for (2), a monic polynomial for x ∈ B over A can be massaged into a monic

polynomial for x/s ∈ S−1B over S−1A. Precisely,

xn + a1x
n−1 + · · ·+ an = 0 ∈ B

yields

(x/s)n + (a1/s)(x/s)
n−1 + · · ·+ an/s

n = 0 ∈ S−1B.

�

24. Going up theorem

We continue to follow A&M closely for this section. The goal is to prove the following
two results:

Theorem 2.51. ([AM69, 5.10], Lying over theorem) Let A ⊆ B integral extension of
rings. Then any prime p of A is a contraction of some prime q of B.

This will take a little work. Assuming it for a moment, let us deduce

Theorem 2.52. ([AM69, 5.11], Going up theorem)
Let A ⊆ B integral extension of rings. If p1 ⊆ p2 primes in A and q1 a prime in B such

that qc1 = p1, the there exists q2 a prime of B containing q1 with qc2 = p2.

The statement in the book is phrased in terms of a chain of n prime ideals; this can be
recovered from our statement by applying it repeatedly.
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Proof. (Proof of going up theorem, assuming [AM69, 5.10].) Let A = A/p1, B = B/q1, so
B is integral over A (since integrality preserved by quotients). Then p2 is the contraction
of some prime r of B, and r = q2 for some prime q2 of B

Now qc2 = p2 simply follows from q2
c = p2. �

So it remains to prove the lying over theorem.

25. Lying over theorem, proof

A rough summary of the strategy is: we want to know something about all primes.
We can turn an arbitrary prime into a maximal ideal by localization. We can turn an
arbitrary maximal ideal into 0 of a field by quotienting. Then we just need to study
integral extensions of fields, which we do by hand. All along, integrality is preserved since
its preserved by localization and quotient. Now we do the steps in the reverse order: fields,
maximal ideals, arbitrary primes.

Proposition 2.53. ([AM69, 5.7]) Suppose A ⊆ B is an inclusion of domains and B integral
over A. Then B is a field iff A is a field.

Proof. Say A a field, y ∈ B nonzero. We want to leverage the fact that y satisfies a monic
polynomial

yn + a1y
n−1 + · · ·+ an−1y + an = 0

to find a multiplicative inverse for y. Indeed, we may assume the monic polynomial above
is of smallest possible degree. Rearrange:

y(yn−1 + · · ·+ an−1) = −an.
Now if an = 0, then y 6= 0 implies y satisfies a monic poly of lower degree, since B is a
domain. So an is a unit, since A a field. So y·thing is a unit, so y is a unit.

Say B a field, and x ∈ A is nonzero. We want to show that the inverse x−1 of x, an
element in B, is actually in A, by using the fact that x−1 is integral over A. We have

x−m + a′1x
−m+1 + · · ·+ a′m = 0

for a′i ∈ A. Now multiply by xm−1 to get

x−1 + (something in A) = 0.

�

Corollary 2.54. [AM69, 5.8] For A ⊆ B rings with B integral over A, let q ⊆ B prime and
p = A ∩ q its contraction (thus p is prime in A). Then q maximal iff p maximal.

Proof. We may as well show that B/q is field iff A/p is a field. But we know that B/q is
integral over A/p, so done by the previous proposition. �
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Corollary 2.55. (Incomparability) Let A ⊆ B be rings, B integral over A. If q ⊆ q′ are
prime ideals of B with qc = q′c = p, then q = q′.

(The slogan “incomparability” remembers that if two primes of B have the same con-
traction, they must be incomparable.)

Proof. First observe that if p is maximal then we conclude q = q′ by the previous statement
(why?), and we are done. So our goal is to reduce to the case that p is maximal using
localization. Let S = A \ p, so S−1A = Ap is local with unique maximal ideal pAp, and
S−1B =: Bp but I find the notation Bp unnecessarily confusing and will avoid it.

We have already shown that the extension of rings S−1A ⊆ S−1B is integral. Moreover
q ⊆ q′ are in (inclusion-preserving) correspondence with primes of S−1B, whose contrac-
tions contain the maximal ideal pAp and hence are pAp. Therefore q and q′ correspond to
the same prime of S−1B, and hence are the same. �

Proof. (Proof of Lying Over Theorem). Remember: given p in A we want to construct q
in B “lying over” A. We’ll do it in two steps: first, suppose we’re in the special case that
p is the unique maximal ideal of A. Then any maximal ideal q of B lies over p; indeed, qc

is some maximal ideal of A, and there’s only one of those.
Second, in the general case, use localization to turn an arbitrary ideal p into the unique

maximal ideal of Ap. Precisely: Let S = A \ p. Have commutative square

A

α
��

// B

β
��

S−1A // S−1B

in which both horizontal arrows are integral ring extensions. Let n be an ideal of S−1B
with n∩S−1A = pAp; we just showed that any maximal ideal of S−1B will do. Then β−1n
contracts to p: go around the diagram the other way to see this. �

Let us discuss the going up theorem for integral extensions a bit. (Then we will hopefully
discuss it again once we do some geometry.)

Definition 2.56. Define Krull dimension.

Proposition 2.57. If A ⊆ B is an integral extension, then dimA = dimB.

Proof. It suffices to be able to produce, given a chain of primes in A, a chain of primes in B
of equal length, and vice versa. Going from a chain in A in a chain in B is the Lying Over
and Going up theorems, and going from a chain in B to a chain in A is the Incomparability
theorem applied to the contractions. �
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26. Noether normalization and Nullstellensatz

Theorem 2.58. (Noether normalization.) Let A a nonzero fg k-algebra. Then there is
a finite injective homomorphism of k-algebras

k[T1, . . . , Td] ↪→ A

for some d ≥ 0.

Note: “finite” can be equivalently replaced by “integral” since everything is finite type.
This is a standard result proved in many algebra books; I’ll follow Liu Algebraic Geometry
and Arithmetic Curves.

Proof. (Proof of Noether normalization.) Have A ∼= k[x1, . . . , xn]/I. By induction on n,
with n = 0 done. If I = 0 done. Else, pick any nonzero polynomial P ∈ I. What would be
lucky is if P were monic as a polynomial in xn, say: then

A′ = k[x1, . . . , xn−1]/(I ∩ k[x1, . . . , xn−1]) ↪→ k[x1, . . . , xn]/I = A

is an injective integral homomorphism, and now we win by induction.
The general strategy is to prove there is a change of variables to get into the lucky case.

suppose we could find integers m1, . . . ,mn−1 (think: ridiculously large integers) such that
P (x1 − xm1

n , . . . , xn−1 − xmn−1
n , xn) is monic in xn. Then we are done for the same reason

as before: consider the map

φ : k[s1, . . . , sn−1]→ k[x1, . . . , xn]/I = A

sending si 7→ xi − xmi
n . Factoring out the kernel, get an injective extension

A′ = k[s1, . . . , sn−1]/ kerφ ↪→ A

which we claim makes A integral over A′. Indeed, xn satisfies the monic polynomial P over
A′, so is integral over A′. And so are each xi − xmi

n . Hence all xi are.
The only thing that remains to be shown is that suchmi can actually be chosen. Exercise!

But it’s a believable exercise. �

Remark 2.59. There is proof for k infinite which is perhaps more intuitive, as it involves
linear changes of coordinates rather than monomial changes of coordinates. (Follow [AM69,
Exercise 5.16].)

Corollary 2.60. If B a fg k-algebra and m a maximal ideal, then B/m is a finite extension
of k.

Proof. Applying Noether normalization to B/m, we obtain the existence of an integral
extension

k[T1, . . . , Td] ⊆ B/m.
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But for an integral extension of domains, one is a field iff the other is a field (as we have
shown). So d = 0. Now an integral extension of k which is finite type as a k-algebra is
finite. �

Corollary 2.61. (Weak Nullstellensatz) Let k be algebraically closed. The maximal
ideals of k[T1, . . . , Td] are

{(T1 − α1, . . . , Td − αd) : (α1, . . . , αd) ∈ kn.}

Proof. First argue these are maximal; they are kernels of evaluation maps.

Conversely, if m ⊂ k[T1, . . . , Td] is maximal, then φ : k
∼=−→ k[T1, . . . , Td]/m is a finite

extension of k, hence is k itself. Let αi ∈ k such that φ(αi) = αi = Ti; here we used that
φ is a map of k-algebras, i.e., fixes the field k. Conclude Ti − αi ∈ m for each i. �

Proposition 2.62. In a nonzero fg k-algebra A, JacA = NilA.

Proof. Suppose f ∈ A \ NilA. To show f 6∈ JacA. Have φ : A → Af 6= 0, so there is a
maximal ideal m ⊂ Af . Then in the inclusion of k-algebras

A/φ−1(m) ⊆ Af/m

the RHS is a finite field extension of k (Corollary of Weak Nullstellensatz); note Af is
finitely generated over k since A was. Thus LHS is also a finite k-module. But a domain
that is a finite k-module is a field. (Indeed, already proved that for an integral extension
of domains, field iff field. Alternatively, prove it directly!) �

Part 3. Some algebraic geometry

27. “Elementary” algebraic geometry in a day: Ideals and varieties

Definition 3.1. Let k = k. Define algebraic subsets of kn. Give examples of union, in-
tersection. Give examples of two algebraic subsets corresponding to different ideals. Give
some nonexamples over R.

Theorem 3.2. (Strong Nullstellensatz). Let k = k, J ⊆ k[T1, . . . , Tn] an ideal. If F ∈
k[T1, . . . , Tn] with F (α) = 0 for all α ∈ Z(J), then F ∈

√
J .

Hence

I(Z(J)) =
√
J.

Hence algebraic subsets and radical ideals are in (inclusion-reversing) bijection.
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Proof. Want F ∈ Nil k[T1, . . . , Tn]/J = Jac k[T1, . . . , Tn]/J . But by the weak Nullstellen-
satz, this happens iff F ∈ (T1 − α1, . . . , Tn − αn) for (α1, . . . , αn) ∈ Z(J). This happens iff
F (α1, . . . , αn) = 0 for each (α1, . . . , αn) ∈ Z(J). �

Do the basic operations: ∩Z(Ii) = Z(
∑
Ii), Z(I) ∪ Z(J) = Z(IJ) = Z(I ∩ J). Define

Zariski topology on Ank .

28. Spec

Definition 3.3. Define Spec. Define Zariski topology. Check it’s a topology.

Exercise 3.4. A new phenomenon: non-closed points. Check that {p} = {q : q ⊇ p}.

Example 3.5. Let k = k. The plane A2
k. Recall in this case, a prime p ⊂ k[x1, . . . , xn] is

determined exactly by the maximal ideals containing it: p = ∩m⊇pm, since k[x1, . . . , xn]/p
has nilradical equal to Jacobson radical.

Definition 3.6. A base of a topology on a set X is a subcollection B of open sets such that
every open is a union of elements of the base.

Definition 3.7. Define the base B of distinguished opens Df of SpecA. Check that an
arbitrary open set V (I)c is a union of elements of the base.

Definition 3.8. A map of rings induces a continuous map of prime spectra. Thus Spec: Ringop →
Top is a functor.

Do examples. Do an example of an integral extension, say k[x2]→ k[x] which illustrates
Noether Normalization.

Definition 3.9. A presheaf is nothing but a contravariant functor!

Give an example of presheaves of continuous functions, say.

Definition 3.10. Define the presheaf of rings OSpecA : Bop → Ring on the distinguished
open sets of SpecA.

Remark 3.11. In fact, the presheaf OSpecA forms a sheaf on SpecA: a presheaf with favor-
able gluability properties (this will be defined formally in 2050).
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In Math 2050, we shall assert that a map f : B → A naturally defines a morphism of
ringed topological spaces (SpecA,OSpecA)→ (SpecB,OSpecB), and in fact

Spec is a fully faithful functor from Ringop to ringed topological spaces.

The essential image of this functor are called affine schemes. That is, an affine scheme is a
ringed topological space isomorphic to some (SpecA,OSpecA). Then a scheme is a ringed
topological space locally isomorphic to an affine scheme. Thus SpecA for rings A play the
role of Rns in manifolds: they are the local patches!

29. Primary decomposition: existence in Noetherian rings

This follows A&M Chapters 4 and 7 closely.

Definition 3.12. Define primary ideal. Equivalently: I is primary if every zero divisor in
A/I is nilpotent.

Example 3.13. Which ideals of Z are primary?

These are the building blocks of ideals, at least over a Noetherian ring: in such a ring,
every ideal has a primary decomposition.

Definition 3.14. A primary decomposition of an ideal I is an expression of I as an inter-
section of finitely many primary ideals.

The primary decomposition in general may not be unique, but there are some partial
uniqueness statements that can be obtained.

Lemma 3.15. If I is primary then p :=
√
I is prime: if fg ∈ p then fngn ∈ I. So either

fn ∈ I or gnN ∈ I. In this situation I is called p-primary.

Example 3.16. The converse is not true: (xy, y2) is not primary (discuss picture) but the
radical is prime. However:

Lemma 3.17. If I is an ideal of A with
√
I maximal, then I is primary.

Proof. By passing to A/I, may as well assume I = 0, so Nil(A) is a maximal ideal. Then
Nil(A), being contained in all primes, is the unique maximal ideal, whose complement in
A must therefore consist exactly of the units of A. Then a zero divisor of A, not being a
unit, must be nilpotent. �

Example 3.18. Now we can exhibit several primary decompositions of (xy, y2).

Theorem 3.19. In a Noetherian ring, every ideal has a primary decomposition.
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Before proving the proposition, it is worth reviewing the equivalent finiteness properties
of Noetherian rings:

Lemma 3.20. Let A be a ring. TFAE, and if they hold the ring is called Noetherian:

(1) Every ideal is fg.
(2) Every ascending chain I1 ⊆ I2 ⊆ · · · stabilizes.
(3) Every nonempty collection I of ideals has a maximal element.

Proof. For (2) implies (3): (Revised from class!) Suppose I has no maximal element.
Pick any I1 in I; since it is not maximal, it is strictly contained in some I2, and so on.
Obtain an ascending chain I1 ( I2 ( · · · which does not stabilize.

For (3) implies (2): Given an ascending chain I1 ⊆ I2 ⊆ · · · , consider a maximal element
IN : then IN = IN+1 = · · · so the chain stabilizes. �

Definition 3.21. I is called irreducible if whenever I = J ∩L then either J = I and J = L.
Otherwise it is called reducible.

Example 3.22. Which ideals of Z are irreducible?

Lemma 3.23. In a Noetherian ring, every ideal is the intersection of finitely many irreducible
ideals.

Proof. Let I be the collection of counterexamples, and assume I is nonempty, so has a
maximal element I. Now I, being a counterexample, is reducible (since it can’t be the
intersection of just one irreducible ideal, I itself). So I = J ∩L where both J, L are strictly
larger. Therefore J, L are not in I, and each admit expressions as intersections of finitely
many irreducibles. �

Lemma 3.24. In a Noetherian ring, an irreducible ideal is primary.

Proof. ([AM69, 7.12]) Passing to the quotient ring, it suffices to prove that if (0) is irre-
ducible then (0) is primary. Say xy = 0, but y 6= 0. If we could show that (0) = (xn)∩ (y)
for some n then we’d be done: since (0) is irreducible and (y) 6⊇ (0) is strictly larger, then
(xn) = (0).

Consider the chain
Ann(x) ⊆ Ann(x2) ⊆ · · ·

which stabilizes: Ann(xn) = Ann(xn+1).
So suppose a ∈ (xn) ∩ (y), and let’s deduce a = 0. Since a ∈ (y), and y annihilates x,

so does a. And since a = bxn, bxn annihilates x: bxn+1 = 0. So b annihilates xn+1. So b
annihilates xn. So a = bxn = 0. �

Then the theorem follows from the two lemmas: every ideal in a Noetherian ring admits
a primary decomposition.
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30. Primary decomposition, continued: uniqueness theorems

Following A&M Chapter 4 closely.

Lemma 3.25. ([AM69, 4.3]) The intersection of p-primary ideals is again p-primary.

Proof. Let qi be p-primary, i = 1, . . . , n. The radical of the intersection is the intersection
of the radicals, so

√
∩qi = p. It just remains to prove ∩qi is primary. Let xy ∈ ∩qi and

y 6∈ ∩qi. Then y 6∈ qi for some i. Then x ∈ √qi = p, which is all we wanted to show. �

Lemma 3.26. ([AM69, 4.4]) Let q be a p-primary ideal, and let x ∈ A. Then

(1) if x ∈ q then (q : x) = (1)
(2) if x 6∈ q then (q : x) is p-primary
(3) if x 6∈ p then (q : x) = q.

Example 3.27. Do a monomial example like q = (x2, xy, y2).

Proof. We prove (2). First we prove
√

(q : x) = p. Since (q : x) can only be bigger than

q, we already have
√

(q : x) ⊇ p. For the other inclusion, if yn ∈ (q : x) then xyn ∈ q and
x 6∈ q implies y ∈ √q = p.

It remains to prove that (q : x) is primary. Say yz ∈ (q : x) with y 6∈ p. Then xyz ∈ q
implies xz ∈ q, so z ∈ (q : x) as desired. �

Next we want to prove a partial uniqueness theorem for primary decompositions. But
we want to rule out silly stuff: if I = q1 ∩ · · · ∩ qn is a primary decomposition of I, say it’s
irredundant if

(1) the primes pi =
√
qi are pairwise distinct, and

(2) qi 6⊇ ∩j 6=iqj for all i.

The primary decomposition is called redundant otherwise. The point is that if your pd is
redundant, then you can make it smaller. If (1) fails, say qα and qβ are both p-primary,
then replace them by qα∩ qβ, which we have already proved is again p-primary. If (2) fails,
just drop the qi from the primary decomposition.

Definition 3.28. (Associated primes) Given an ideal I admitting a primary decomposi-
tion (for example, any ideal in a Noetherian ring), the associated primes of I are the prime
ideals in the set

{
√

(I : x) | x ∈ A}.

Theorem 3.29. ([AM69, 4.5] First uniqueness theorem of primary decomposition)
Suppose I = q1 ∩ · · · qn is an irredundant primary decomposition. Let pi =

√
qi for each i.

Then the pis are exactly the associated primes of I; in particular, they depend only on I,
and are independent of choice of primary decomposition.
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Example 3.30. Examine this theorem in our favorite example (y2, xy), which has lots of
pds for example

(y2, xy) = (y) ∩ (x− ay, y2), a ∈ k.

We need a lemma:

Lemma 3.31. ([AM69, 1.11]) If a prime p contains an intersection of finitely many ideals
∩Ii, then p contains some individual ideal Ii. Hence p = ∩Ii implies p = Ii for some i.

Proof. (Proof of Lemma) If p 6⊇ Ii for each i, say fi is a witness; that is, fi ∈ Ii \ p. Then∏
fi ∈ ∩Ii \ p. �

Proof. (Proof of first uniqueness theorem) First let us show that p1, say, is an associated
prime. By irredundancy, there exists f ∈ (q2 ∩ · · · ∩ qn) \ q1. Then

(I : f) = (∩qi : f) = ∩(qi : f) = (q1 : f) ∩ (1) ∩ · · · (1) = (q1 : f),

which we already showed is p1-primary. So p1 =
√

(I : f) is an associated prime.

Second, suppose
√

(I : f) is prime for some f ; let us show that it appears among the pi.
We have √

(I : f) =
√⋂

(qi : f) =
⋂√

(qi : f).

Remember that we proved that (qi : f) is (1) if f ∈ qi and is pi-primary otherwise. So the
last intersection is ⋂

qi 63f
pi.

So by the lemma, since
√

(I : f) is prime by assumption, it is equal to some pi. �

Definition 3.32. Define minimal, embedded primes.

This terminology is completely inscrutable without pictures!

We close by stating the following partial uniqueness theorem. It is good to know, but
we will not prove it.

Theorem 3.33. ([AM69, 4.11], Second uniqueness theorem) The minimal primary compo-
nents, i.e., the primary components of an irredundant decomposition which correspond to
minimal primes, are independent of choice of primary decomposition.
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31. Normal domains; normalization

Definition 3.34. Let A be an integral domain.

(1) The normalization of A is its integral closure in FracA.
(2) We say A is integrally closed or normal if it is already integrally closed in its fraction

field.

Example 3.35. We already proved that UFDs are normal.

Example 3.36. An interesting non-example: The ring

A =
C[x, y]

(y2 − x2 − x3)

is a domain: y2 − x2 − x3 is irreducible. (Can you prove it?) It is not normal: consider
u = y/x ∈ FracA. Then u2 − x− 1 = 0. So the normalization of A at least contains u.

We claim that A[u] ∼= C[u], more precisely that

A //

��

FracA

C[u]

??

is a commuting diagram of injections, where x 7→ 1 − u2, y 7→ u(1 − u2) on the left and
u 7→ y/x on the right.

Exercise 3.37. Check all those assertions.

Then C[u], being a UFD, is integrally closed, so C[y/x] is the integral closure of A.

Now draw the pictures to see what you got! Here normalization separates analytic
branches: the two points u = ±1 on the u-line map to the node x = y = 0 on SpecA.

By the way, there is a universal property: for A a domain, the map A → Aν to the
normalization of A is initial among all injections of A to normal domains.

Proposition 3.38. (“Normalization commutes with localization”) Let A ⊆ B, C the integral
closure of A in B. Let S ⊂ A be a multiplicative subset. Then S−1C is the integral closure
of S−1A in S−1B.

Proof omitted; see [AM69, 5.12]. Discuss the geometric utility of this.

Part 4. A little homological algebra

We will follow [Wei94], and perhaps [Eis95].
Say F : A → B is an additive functor on abelian categories that is right exact. We wish

it were exact, but it isn’t. So we wish to measure failure of left exactness. We will do so
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using left derived functors. We will study in detail the case of Tor, the left derived functor
of tensor.

The analogous story for left exact functors is left as an exercise in flipping everything,
with projective objects replaced by injective objects. A common one is Ext. Another
important one arising in geometry is the higher cohomology groups of sheaves.

32. Projective objects

Given an object N in any abelian category, “recall” that the functor

Hom(N,−) : A → A
is automatically a left exact functor. (We proved this for R-modules by exhibiting it as a
right adjoint, in fact).

Definition 4.1. An object P in an abelian category A is projective if Hom(P,−) is an exact
functor.

Example 4.2. In R-mod, free modules are projective. (Check this slowly.) In fact a standard
exercise is to show that an R-module is projective if and only if it’s a direct summand of
a free module.

Remark 4.3. Projective modules are very close to locally free. Exercise: a finitely presented
module M is projective iff it is locally free. So projective modules over R play the role of
algebraic vector bundles over SpecR.

Definition 4.4. Say that an abelian category A has enough projectives if every object A
admits an epimorphism P → A from a projective.

Example 4.5. So, for example, R-mod has enough projectives: every module is the surjec-
tive image of a free module.

Note right away that if A has enough projectives then every object A admits a projective
resolution:6

Definition 4.6. (Projective resolution) A projective resolution of A is a complex

· · ·P2 → P1 → P0 → 0→ · · ·
together with a map P0

ε−→ A such that the augmented sequence

· · ·P2 → P1 → P0
ε−→ A→ 0

is an exact complex.

6First make sure we agree on what a complex is.
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Proposition 4.7. If A has enough projectives then every object A admits a projective
resolution.

Proof. Hit A with an epimorphism ε from some projective P0. Then hit ker ε with an
epimorphism from some projective P1, and so on. �

33. Derived functors

Fix F : A → B a right exact additive functor of abelian categories, and assume A has
enough projectives. We are going to define

(1) a sequence of functors

L0F = F, L1F, L2F, . . . : A → B
called the left derived functors of F ;

(2) for every short exact sequence

0→ A→ B → C → 0

maps
δi : LiF (C)→ Li−1F (A),

such that

• For every short exact sequence

0→ A→ B → C → 0

there is a long exact sequence

(1) · · · δ2−→ L1FA→ L1FB → L1FC
δ1−→ L0FA→ L0FB → L0FC → 0

• the δi are compatible with morphisms of SES in the sense that whenever you have
a morphism of SES

0 // A′

��

// B′

��

// C ′

��

// 0

0 // A // B // C // 0

the following squares commute for all i:

(2) LiFC
′

��

δ // Li−1FA
′

��

LiFC
δ // Li−1FA

.

The left derived functors of F that we construct satisfy an appropriate universal property,
among all such data of the above form. We will not state it precisely.

Now we define the derived functors LiF , although we will not verify all details. The
main thing to know is that they exist, that you will shortly know how to compute them,
and that a SES in A produces a long exact sequence as in Equation (1).
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Definition 4.8. (Definition of left derived functors) Let F : A → B be a right exact
additive functor of abelian categories, and suppose A has enough projectives.

Let A be an object in A. Choose any projective resolution

P• = (· · · → P2 → P1 → P0)

of A. This complex is understood to be 0 in homological degree −1, −2, . . . Let

FP• = (· · · → FP2 → FP1 → FP0)

Then define
LiF (A) = Hi(FP•).

We omit the following laundry list of things:

(1) Given a map A → A′, there is a natural morphism LiFA → LiFA
′ in B; in this

way, the LiF are functors.
(2) Independence of choices: different choices of projective resolutions yield functors

that are naturally isomorphic to LiF .
(3) Given a SES 0→ A→ B → C → 0 in A, there are natural morphisms

LiFC
δi−→ Li−1FA,

making the two conditions (1) and (2) above hold, and making the universal prop-
erty of left derived functors (which we never stated precisely) hold.

Proof. Check all of these when you are older. You can read [Wei94, §2.4], for example. �

We will, however, do some more straightforward sanity checks:

Sanity check 1. We have L0F = F .

Proof. At least, we will prove L0F (A) ∼= F (A) for all A. This follows from F being right
exact. Namely, choose a projective resolution P• for A. Since P1 → P0 → A→ 0 is exact,
and F is right exact, we have

FP1 → FP0
ε−→ FA→ 0

is exact, which says that FA ∼= cok(FP1 → FP0) = H0(FP•). �

Sanity check 2. We have LiF = 0 for all i > 0 exactly when F is exact. In fact, we have
L1F = 0 exactly when F is exact.

Proof. If F is exact, then for a projective resolution P• of A, we have

LiFA = Hi(· · · → FP2 → FP1 → FP0 → 0)

but this sequence is exact in homological degree 1, 2, . . . by exactness of F .
Conversely, if LiF = 0 for all i > 0, in particular L1F = 0. Then given any SES

0→ A→ B → C → 0

we get a LES
· · · → L1FB → L1FC → FA→ FB → FC → 0.



COURSE NOTES FOR MATH 2520 GRADUATE ALGEBRA 45

But L1FC = 0, so
0→ FA→ FB → FC → 0

is exact, as desired. �

One more thing to note:

Fact 4.9. If P is a projective object of A then LiF (P ) = 0 for all i > 0.

Proof.
· · · → 0→ P

is a resolution of P , and the complex

· · · → 0→ FP

has no homology in degrees > 0. �

34. Tor

The left-derived functors of tensor are called Tor.

Definition 4.10. Let N be an R-module. The functor − ⊗R N from R-mod to R-mod is
right exact. We write

TorRi (−, N) : R-mod→ R-mod

for its ith left derived functor.

The name Tor comes from the following special case:

Example 4.11. [Wei94, 3.1.1] For p prime andB an abelian group, let us compute TorZi (Z/pZ, B).
We take a projective (free) resolution

0→ Z ·p−→ Z
of Z/pZ and tensor with B to obtain a complex

0→ B
·p−→ B.

Then TorZi (Z/pZ, B) can be read off as the homology of this complex:

TorZi (Z/pZ, B) =


B/pB if i = 0,

{b ∈ B : pb = 0} if i = 1,

0 if i ≥ 2.

So TorZ1 (Z/pZ, B) is the p-torsion of B.
A useful fact about Tor that we may use but not prove is that, just like the tensor

product, it is symmetric bilinear:

Proposition 4.12. We have

TorRi (M,N) ∼= TorRi (N,M).
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Proof. Prove this when you are older, using spectral sequences. (Exercise 23.3.A of Vakil’s
The Rising Sea.) �

35. Tor and flatness

(Recall the definition of a flat module.)
We return to flatness, to try to understand it more geometrically–from its definition,

it is quite mysterious. We shall prove a useful characterization of flatness using Tor. We
follow [Eis95, Proposition 6.1].

Proposition 4.13. Let M be an R-module, I ⊆ R an ideal. The “multiplication map”

I ⊗RM →M

is injective iff TorR1 (R/I,M) = 0.

(Recall the multiplication map, studied on a previous problem set: is obtained by tensoring
I → R with M .)

Proof. The SES
0→ I → R→ R/I → 0

produces a long exact sequence

· · · → TorR1 (I,M)→ TorR1 (R,M)→ TorR1 (R/I,M)→ I ⊗M →M →M/IM → 0

where the first blue term is 0 since R is projective (indeed free). Therefore TorR1 (R/I,M) =
ker(I ⊗M →M). �

Proposition 4.14. Let M be an R-module. Then M is flat iff for all finitely generated ideals
I, the multiplication map I ⊗M →M is injective.

Proof. Recall that M is called flat if for all injections N ′ → N of R-modules, the map
M ⊗ N ′ → M ⊗ N is injective. So the forward direction follows from considering the
injection I ⊆ R.

The content of the proposition is the reverse direction. In other words, we need to show
that for all injections N ′ ⊂ N , the map M ⊗N ′ →M ⊗N is injective, knowing only that
the statement is true for injections of the form I ⊆ R where I is a fg ideal.

First, let’s show that for arbitrary ideals I ⊆ R, the map I ⊗M → M is injective.
Here we actually appeal to the construction of the tensor product7 Namely, suppose x =∑
ri ⊗mi ∈ I ⊗M , with x 7→

∑
rimi = 0. The key point is that x involves only finitely

many elements ri of I. Consider the finitely generated ideal I ′ = 〈ri〉. Then

I ′ ⊗M → I ⊗M →M

is injective, and takes
∑
ri ⊗mi 7→ x 7→ 0. So x = 0.

7I don’t know how to do it only with universal properties!
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Second, let’s show that for inclusions N ′ ⊂ N in which N is finitely generated, the map
N ′ ⊗M → N ⊗M is injective. By throwing generators in one at a time, we may choose a
sequence of submodules

N ′ = N0 ⊂ N1 ⊂ · · · ⊂ Np = N

where Ni+1/Ni is generated by 1 element. We may as well assume, then, that N/N ′ itself
is generated by 1 element, and show that N ′ ⊗M → N ⊗M is injective; then win by
induction.

What does it mean for a module M to be generated by 1 element?8 It means we have a
surjection R�M , so M ∼= R/I for some ideal I.

Now, the SES

0→ N ′ → N → N/N ′ → 0

produces a LES that ends

· · · → TorR1 (N/N ′,M)→ N ′ ⊗M → N ⊗M → N/N ′ ⊗M → 0.

But TorR1 (N/N ′,M) = TorR1 (R/I,M) = 0 by Proposition 4.13, since we already established
that I ⊗M →M was injective. We are done with the second step.

Third, let’s conclude by showing that for arbitrary N ′ ⊆ N , with N not necessarily
finitely generated, N ′ ⊗M → N ⊗M is injective. This is similar in spirit to the first step.
Say

x =
∑

ni ⊗mi 7→ 0 ∈ N ⊗M.

We want to show x = 0 ∈ N ′ ⊗M .
The reason that x is 0 in N ⊗M is that x can be written as an R-linear combination of

relations on the symbols n⊗m that express bilinearity, such as

(n+ n′)⊗m− n⊗m− n′ ⊗m,

et cetera. Let P ′ = 〈ni〉 and let P be generated by the ni together with the elements of n
involved in this finite expression, so P is finitely generated. Then we have

∑
ni ⊗mi 7→

0 ∈ P ⊗M , but P ′ ⊗M → P ⊗M is injective by Step 2, so
∑
ni ⊗mi = 0 ∈ P ′ ⊗M and

in N ′ ⊗M , done. (Maybe it helps to stare at the following commutative square.)

P ′ ⊗M

��

// P ⊗M

��

N ′ ⊗M // N ⊗M
�

Remark 4.15. It is possible to get around directly invoking Tor, at the cost of a clunkier
proof. See e.g., [Liu02, Theorem 1.2.4].

8Such a module is called a cyclic module.
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Definition 4.16. An R-module M is torsion-free if for all r ∈ R and x ∈ M , rx = 0 only
when r = 0.

Corollary 4.17. Over a PID R, a module M is flat iff it is torsion-free.

Proof. We proved that M is flat iff for all ideals I, TorR1 (R/I,M) = 0. Since TorR1 (R,M) =
0, we may restrict our attention to nonzero I, generated by a nonzerodivisor r. Then

0→ R
·r−→ R

is a resolution of R/(r), so the homology at degree 1 of

0→M
·r−→M

computes TorR1 (R/(r),M). So TorR1 (R/(r),M) = {x ∈ M : rx = 0}. Therefore M is flat
iff M is torsion-free. �

Example 4.18. Consider R = k[ε]/(ε2). Topologically, ∆ = SpecR is no different from
Spec k, a point. Recall that everything is flat over a field. But unlike over k, flatness over
R is not at all an automatic condition: it has to do with first order deformations. This
will be studied on the homework.

36. Tor and the Hilbert syzygy theorem

I’m using a mix of sources, including [EH00, III.3.3] and [AM69, Chapter 11]. The
proof of Hilbert Syzygy Theorem is the one I learned from Adam Boocher, who was my
officemate in grad school. It is presumably somewhere in [Eis95, Chapter 19]. We will
accept without proof that TorRi (M,N) ∼= TorRi (N,M).

Let S = k[x1, . . . , xn], regarded as a Z-graded ring with deg xi = 1, and let M be a
graded S-module. This means that M =

⊕
i∈ZMi is Z-graded as an abelian group, with

SiMj ⊆Mi+j . A morphism φ : M →M ′ of graded modules of degree d is a morphism such
that φ(Mi) ⊆ Ni+d.

For any b ∈ Z, it will be convenient to define the shifted module M(b) as the graded
S-module with

M(b)j = Mb+j .

This is horribly counterintuitive notation, in that the elements of M(1), say, have degrees
shifted down by 1.

deg · · · −1 0 1 2 · · ·
M · · · M0 M1 M2 · · ·

M(1) · · · M0 M1 M2 · · ·
We shall be interested in resolutions of finitely generated modules M by graded free

modules, i.e., modules that are direct sums of S(b) for various b.
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Definition 4.19. A free resolution of M is a complex of graded modules

· · · → E2 → E1 → E0,

with each morphism of degree 0 (i.e., degree-preserving), with Ei =
⊕

j S(−bij) a direct
sum of graded free modules, such that the augmented complex

· · · → E2 → E1 → E0 →M

is exact.

Example 4.20. Let S = k[x, y, z], and let I = (xy, z). Then S/I is a graded S-module.
Here’s an exact sequence, exhibiting a free resolution of S/I:

0 −→ S(−3)

[
z
−xy

]
−−−−−→ S(−2)⊕ S(−1)

[
xy z

]
−−−−−−→ S −→ S/(xy, z) −→ 0

One can always find a free resolution, in fact a minimal free resolution, of M , greedily.
First, identify a minimal set of homogeneous generators for M , say Gi of degree di, and hit
each Gi with a free module S(−di). We get a surjection

⊕
i S(−di) → M . The kernel is

some graded module; now find a minimal set of homogeneous generators for this kernel, hit
them all with a big free module with appropriate shifts, and so on. Call such a resolution
a minimal resolution.

What is not at all obvious is whether this process terminates. In fact, it always termi-
nates after n steps!

Theorem 4.21. (Hilbert syzygy theorem.) Every finitely generated graded module M
over k[x1, . . . , xn] has a finite free resolution. In fact, every minimal resolution of M has
at most length n.

Example 4.22. The Koszul complex. Let m = (x1, . . . , xn). Then there is a famous reso-
lution for S/m of length n called the Koszul complex. We illustrate it for n = 3 explicitly
below (in blue); you can write it down for general n as an exercise.

0 −→ S(−3)


z
−y
x


−−−−→ S(−2)⊕3


y z
−x z

−x −y


−−−−−−−−−−−−→ S(−1)⊕3

[
x y z

]
−−−−−−−→ S −→ S/(x, y, z) −→ 0

Proof of Hilbert syzygy theorem. Let

· · · φ2−→ E2
φ1−→ E1

φ0−→ E0

be a minimal free resolution of M . In particular, it’s a projective resolution, and we can
use it to compute Tor functors. First, though, notice that each matrix representing φi has
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entries in m = (x1, . . . , xn): otherwise the resolution wasn’t minimal.9 Therefore, tensoring
with k = S/m we obtain a complex

· · · 0−→ E2 ⊗S k
0−→ E1 ⊗S k

0−→ E0 ⊗S k

with all maps 0. Thus TorSi (M,k) ∼= krank(Ei).
On the other hand, consider the Koszul complex for k = S/m. Tensoring it with M yields

TorSi (k,M) = 0 for i > n. But TorSi (k,M) = TorSi (M,k). So En+1 = En+2 = · · · = 0. �

This proof shows something interesting: all minimal free resolutions have the same
sequence of ranks! After all, those ranks measure dimensions of Tor modules: we showed

rank(Ei) = dimk TorSi (M,k)

for any free resolution E• of M .
In fact, you can carry through the whole proof above remembering the Z-grading, to

arrive at the concept of the Betti numbers of M .

Definition 4.23. Let M be a finitely generated Z-graded module M over k[x1, . . . , xn]. Let

(3) · · · →
⊕
j∈Z≥0

S(−j)β2,j →
⊕
j∈Z≥0

S(−j)β1,j →
⊕
j∈Z≥0

S(−j)β0,j

be any graded free resolution of M . Then the numbers βi,j = βi,j(M) are called the Betti
numbers of M .

The point, which we now justify, is that the βi,j are independent of choice of resolution,
and depend only on M .10

Note first that if M , N are graded modules over the graded ring S then M ⊗ N has
a natural grading, namely put x ⊗ y in degree a + b if deg(x) = a and deg(x) = b. Free
resolutions of M , respectively N , can be chosen to be graded, and from this the modules
TorSi (M,N) inherit a grading. Then the free resolution in (3) may be tensored with k (the
latter is, as an S-module, concentrated in degree 0) to obtain that

βi,j(M) = dimk(TorSi (M,k))j

where the subscript denotes “degree j part.”
In particular, the Betti numbers are independent of choice of graded free resolution.

There is a rich, active study of Betti tables of graded modules among present-day alge-
braists.

9For example, say M is minimally generated by homogeneous elements G1, . . . , Gt in degrees d1, . . . , dt.
Say e1, . . . , et is the corresponding basis of E0 = ⊕t

i=1S(−di), with ei 7→ Gi. Then if φ0 had a column with
an element of degree 0 in it, we’d have an expression of the form

∑
aiei ∈ ker(E0 →M) with some ai ∈ k

a nonzero scalar. That means
∑
aiGi = 0 ∈ M . Now by dividing by ai, we may express some Gi as an

S-linear combination of othter Gjs, contradicting minimality.
10This discussion follows [MS05, Lemma 1.32], except that there the finer Nn grading on S is used; the

arguments carry over.
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37. Hilbert functions, Hilbert polynomials

Let A =
⊕

d≥0Ad be a Z-graded Noetherian ring. Then A0, being a quotient of A, is

also Noetherian, and A is finitely generated over A0, as an A0-algebra [AM69, (10.7)] (not
proved in this class), say by homogeneous elements x1, . . . , xn in positive degree.

We make two assumptions that are not completely necessary but simplify the discussion:
we shall assume that A0 = k is a field, and that deg xi = 1 for all i. The most important
example is A = S = k[x1, . . . , xn].

Let M =
⊕

d≥0Md be a f.g. graded A-module. Then each dimkMd is finite (why?).

Definition 4.24. The Hilbert function of M is the collection of these numbers: it is the
function

hM : N→ N, hM (d) = dimkMd.

Example 4.25. S = k[x1, . . . , xn] itself has Hilbert function

hS(d) =

(
d+ n− 1

n− 1

)
by a “sticks and stones” elementary combinatorics argument: the number of monomials
in k[x1, . . . , xn] of degree d is equal to the number of arrangements of n − 1 sticks and d
stones. Figure out the bijection: e.g.,

• | • • | | • • corresponds to x1x
2
2x

2
4.

Just to be very sure: the binomial coefficient is defined as(
d+n−1

n

)
=

1

(n−1)!
(d+n−1) · · · · · (d+1)(d)

if d ≥ 0, and 0 otherwise.

Example 4.26. Then by shifting, the Hilbert function of S(−j) is

hS(−j)(d) =

(
d− j + n− 1

n− 1

)
.

One way to arrange all the numbers hM (d) is to hang them up as coefficients of a power
series:

Definition 4.27. The Poincaré series or Hilbert series of M is the power series

FM (t) =
∑
d≥0

hM (d)td ∈ Z[[t]].

It turns out that these power series are nice: they are actually rational functions in t,
with a pole of order ≤ n at t = 1 and no other poles.



52 M. CHAN

Example 4.28. The Poincaré series of S itself is 1/(1− t)n. Indeed,

(4)
1

(1− t)n
= (1 + t+ t2 + · · · ) · · · (1 + t+ t2 + · · · ) =

∑
d≥0

(
d+ n− 1

n− 1

)
td.

Therefore the Poincaré series of S(−d) itself is td/(1− t)n.
Therefore:

Proposition 4.29. For any finitely generated graded module M over a graded Noetherian
ring A, we have

FM (t) =
f(t)

(1− t)n
for some polynomial f(t) ∈ Z[t]. Here n is any number such that A may be generated over
A0 by elements x1, . . . , xn of degree 1.

Proof. In general, this can be proven by induction on n; see [AM69, Theorem 11.1]. When
A = k[x1, . . . , xn], it already follows from our statement of Hilbert’s syzygy theorem,
implying the existence of a finite free resolution of M . Indeed, use the fact that if

0→M1 → · · · →M` → 0

is any exact sequence of fg graded A-modules, then
∑

(−1)iFM (t) = 0. �

Definition 4.30. Define d(M) to be the order of the pole at t = 1 of FM .

Corollary 4.31. (Definition of Hilbert polynomial) There is a (necessarily unique)
polynomial pM ∈ Q[t] such that pM (d) = hM (d) for all d >> 0. This pM is called the
Hilbert polynomial of M .

Proof. This follows from (4). �

Corollary 4.32. [AM69, Corollary 11.2] The degree of the Hilbert polynomial pM is d(M)−
1.

Proof. Let d = d(M) for short. By canceling factors of (1− t) as needed, we may write the
Poincaré series of M as

FM (t) =
g(t)

(1− t)d
=
a0 + · · ·+ aN t

N

(1− t)d
,

where g(1) = a0 + · · ·+ aN 6= 0.
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Now recall yet again that

1

(1− t)d
=
∑
j≥0

(
j + d− 1

d− 1

)
tj ,

so the coefficient of tj in this power series is a polynomial in j, of degree d− 1 and leading
coefficient 1/(d− 1)!.

Therefore, the power series ait
i/(1 − t)d has coefficients agreeing, after a “delay” of i

terms, with a polynomial of degree d− 1 and leading coefficient ai/(d− 1)!.
Therefore FM (t) also has coefficients agreeing, after N terms, with a polynomial of

degree d − 1 and leading coefficient a0+···+aN
(d−1)! . The point is that this number is not zero,

by the assumption that g(1) 6= 0, so the Hilbert polynomial of M really does have degree
d− 1. �

Remark 4.33. Hilbert polynomials are important invariants of projective schemes (the
schemey version of zero sets, in projective space, of homogeneous polynomials). Hilbert
polynomials and flatness (of projective morphisms) are related; the precise statement is
beyond the scope of the course.

Part 5. More algebra and geometry

38. Elementary projective geometry in a day

How do graded rings arise geometrically? There are at least two ways: first, as coordinate
rings of projective varieties. Second, as associated graded rings of local rings.

Definition 5.1. Let k = k. Let S = k[x0, . . . , xn].
Define Pn as a set and define the projective algebraic subset corresponding to a homo-

geneous ideal I ⊂ S.
Define I(Z) as the ideal generated by homogeneous polynomials vanishing on Z.

Definition 5.2. The irrelevant ideal in S is m = (x0, . . . , xn). It is kind of a mean name,
but the point is that the affine zero set of m is nonempty while its projective zero set is
empty.

Proposition 5.3. (Projective Strong Nullstellensatz) For any homogeneous J , excluding

when
√
J = m, we have I(Z(J)) =

√
J .

Thus, there is a bijective, inclusion-reversing correspondence between radical homoge-
neous ideals of S other than the irrelevant ideal and projective algebraic subsets of Pn.

Proof. Discuss why the projective Nullstellensatz is completely reasonable. �
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Remark 5.4. Mention the Proj construction.

One way to define the dimension of a projective algebraic subset is via the Hilbert
polynomial:

Definition 5.5. Let S = k[x0, . . . , xn]. Let I be a radical homogeneous ideal of S. The
dimension of Z(I) is deg pS/I(t) = d(S/I)− 1.

Recall that for M an S-module, the number d(M) is defined to be the order of the pole
at t = 1 of the Poincaré series FM (t) of M . Discuss why this definition is reasonable (first
agree that no matter what, we should stipulate dimPn = n.)

That said, having a local definition of dimension—eventually, the dimension of a scheme
X at a point x—would be advantageous.

39. Associated graded rings and the tangent cone

Let A be any ring and I an ideal. The associated graded ring will live up to its name: it
is a graded ring associated with the pair (A, I). First define the blowup algebra, denoted

Ã or BlI(A):

Definition 5.6. The blowup algebra or Rees algebra is the graded ring

BlI(A) =
⊕
d≥0

Id = A⊕ I ⊕ I2 ⊕ · · · .

Thus BlI(A) is naturally a graded A-algebra.

Make sure we agree on how multiplication works in the blowup ring. The blowup algebra
is the algebraic operation behind the blowup in algebraic geometry, namely Proj BlI(A).
But this is beyond the scope of the course. . .

Definition 5.7. The associated graded ring is the graded ring

Ã/IÃ = GI(A) = A/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · ·

The associated graded ring has a nice geometric interpretation in terms of the tangent
cone. Forget its grading; then it is just a ring, and you can take its Spec.

Definition 5.8. Let R be a fg k-algebra, m a maximal ideal of R, and let A = Rm. The
tangent cone of SpecA at m is SpecGm(A).

Example 5.9. Draw pictures, showing how the tangent cone looks. The justification for the
pictures will be the following exercise, on the homework:
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Exercise 5.10. Let B = k[x1, . . . , xd]/I and m = (x1, . . . , xd), and let A = Bm. Prove that

Gm(A) ∼= k[x1, . . . , xd]/〈in(f) : f ∈ I〉.
Here, in(f) denotes the sum of all terms of f of lowest degree.

40. Dimension theory

We will work with Noetherian rings throughout. Our goal is to state the main theorem
of dimension theory of Noetherian local rings. The proof relies on [AM69, §10], so we will
only sketch the proof.11

I will write dimR for the Krull dimension of R (make sure we remember what that is.)
We may reduce to the local case:

Remark 5.11. For any ring R, we have

dimR = sup {dimRp : p prime in R}.
Define the dimension of SpecR at p to be dimRp.

Remark 5.12. Talk a little bit about how to think about the local ring Rp, as the stalk of
the structure sheaf OSpecR at p.

Theorem 5.13. [AM69, Theorem 11.14] (Dimension theorem for Noetherian local
rings.) Let (A,m) be a Noetherian local ring. The following three numbers are equal:

(1) dimA,
(2) d(A) := d(Gm(A)), and
(3) δ(A) := the smallest number of generators for any m-primary ideal of A.

Remark 5.14. Which one of the three numbers would you rather compute?

Example 5.15. Draw pictures, e.g., Spec of the localization of k[x, y, z]/(y2 − x2 − x3) at
m = (x, y, z). Here the chain of primes, e.g., (x, y, z) ) (x, y) ) (y2 − x2 − x3) realizes the
dimension.

For the third way of computing dimension, notice m = (x, y, z) is minimally generated
by three elements. But consider, e.g., (z, x) or (z, y). Draw the picture.

Here we will give a sketch of the proof of the Dimension Theorem. For a complete proof,
we would need some theorems like the Artin-Rees Lemma from Chapter 10.

Proof. [AM69, Proposition 11.7] Proof that δ(A) ≥ d(Gm(A)). Pick q a best m-primary
ideal (meaning, smallest possible number of generators, namely δ(A)). Recall

Gq(A) = A/q ⊕ q/q2 ⊕ · · ·

11Last year I covered [AM69, §10], but this year I covered more category theory plus derived functors
and Tor instead, and I’m very happy with the tradeoff so far.
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so actually d(Gq(A)) ≤ δ(A), since Gq(A) is generated in degree 1 by δ(A) elements hence

its Poincaré series has the form polynomial/(1− t)δ. Here each qi/qi+1 is not quite a vector
space, since A/q need not be a field. However, A/q is an Artinian ring, and each qi/qi+1

is a finite length A/q-module, and the Hilbert function measures lengths of graded pieces,
rather than dimensions of graded pieces, in this case.

Why, then, do we have d(Gq(A)) = d(Gm(A))? Roughly this is because m ⊇ q ⊇ mr

for some r, due to Noetherianity. That implies that the rates of growth of the lengths of
A/q,A/q2, A/q3, . . . and A/m, A/m2, A/m3, . . . are the same, i.e, governed by polynomials
of equal degree. Then the numbers d(Gq(A)) and d(Gm(A)) are both one less than that
(and hence are equal), in the same way that if you have a polynomial f(x) of degree d,
then the polynomial f(x)− f(x− 1) has degree d− 1. �

For the next step, we need

Proposition 5.16. [AM69, Corollary 11.9] For A a Noetherian local ring and x ∈ A a NZD,
then d(Gm(A/(x))) ≤ d(Gm(A))− 1.

Proof. [AM69, Proposition 11.10] Proof that d(Gm(A)) ≥ dimA. By induction on d =
d(A) := d(Gm(A)). For the base case, if d = 0 then mn = mn+1 = · · · for some n. By
Nakayama, that can only happen if mn = 0. Therefore A is actually local Artinian, with
dimA = 0.

Now for the inductive step, say p0 ⊂ · · · ⊂ pr is a chain of primes in A, and let A′ = A/p0.
So A′ is a domain, and the image x′ of any x ∈ p1 \ p0 is a NZD. We will slice by x′ and
apply induction: we have d(A′/(x′)) ≤ d(A′)−1 using the previous (unproven) proposition.
And, we have d(A′) ≤ d(A) (one line of proof omitted: since A′ is a quotient of A, growth
in A′ can’t be faster than growth in A). So

r − 1 ≤ dimA′/(x′) ≤ d(A′/(x′)) ≤ d(A′)− 1 ≤ d(A)− 1

where the first inequality is because p1, . . . , pr give a chain of primes in A′/(x′), and the
second inequality is by induction. Now dimA−1 is the “supremum of all possible (r−1)”,
so conclude dimA− 1 ≤ d(A)− 1. �

Definition 5.17. We need to define the height of a prime p: the supremum of lengths of
chains

p0 ( · · · ( pr = p.

Proof. [AM69, Proposition 11.13] Proof that dimA ≥ δ(A). Let d = dimA. We will
construct, inductively for each i = 0, . . . , d, a proper ideal (x1, . . . , xi) such that every
prime over this ideal has height ≥ i. If we can do this, then the last ideal (x1, . . . , xd) wins
the game for us because it is m-primary: indeed, its radical is m, since any prime above it
has height d, and the only prime of height d is m itself. (Recall that if your radical is a
maximal ideal m then you’re m-primary.)
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Inductively, we’ve already constructed (x1, . . . , xi−1), and we want to pick xi. Pick
xi ∈ m \ ∪pj , where the union ranges over all primes pj above (x1, . . . , xi−1) of height
exactly i− 1 (if any). This is possible,12 by [AM69, 1.11] simply because m, having height
d itself, is not among the pj . Then we claim (x1, . . . , xi) works: let q be any prime over
it. Then q must have height ≥ i: indeed, q is a prime above (x1, . . . , xi−1), hence lies
above some minimal prime above (x1, . . . , xi−1). If that minimal prime is some pj of height
exactly i − 1, then q has height ≥ i since it’s different from pj : after all, it contains x. If
that minimal prime is of height ≥ i, then even better, as immediately we have height q ≥ i;
we’re done. �

41. Regular local rings

Let (A,m) be a Noetherian local ring of dimension d. By the dimension theorem, we
know m can’t be generated by fewer than d elements. Notice then, by Nakayama’s Lemma,
that dimk m/m

2 ≥ d, where we write k = A/m.

Definition 5.18. For (A,m) be a Noetherian local ring of dimension d, say A is regular if
m can be generated by d elements.

This terminology carries over to schemes: let R be a Noetherian ring. We say p ∈ SpecR
is a regular point of SpecR if Rp is a regular local ring. Otherwise we say p is a singular
point. The regular points are the “manifold-like” points; see below.

Definition 5.19. With A as above, following terminology is sometimes used: if q is an m-
primary ideal, with q = (x1, . . . , xd), then x1, . . . , xd are called a system of parameters. So
A is regular if m itself has a system of parameters.

Proposition 5.20. [AM69, 11.20, 11.22]Let (A,m) be a Noetherian local ring of dimension
d. TFAE:

(1) Gm(A) ∼= k[t1, . . . , td],
(2) dimk m/m

2 = d,
(3) A is regular.

Remark 5.21. The first characterization of regular local rings is useful for intuition: if m
is a maximal ideal of A, then m is regular if SpecA looks like a manifold near m.

12Note that in any Noetherian ring, for example A/(x1, . . . , xi−1) there are only finitely many minimal
primes. You can prove it directly following Noether [Eis95, Exercise 1.2]. Or to deduce it from what we have
already discussed on homework: argue that Spec of a Noetherian ring is a Noetherian topological space, and
hence has finitely many irreducible components, which you have shown in [AM69, Exercise 1.20]correspond
to minimal primes.
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Proof. (i) implies (ii) since m/m2 is exactly the degree 1 part of Gm(A).
(ii) implies (iii) by Nakayama.
For (iii) implies (i): Let x1, . . . , xd be generators for m. Then the map of graded rings

k[t1, . . . , td]→ Gm(A)

sending ti → xi = xi + m2 is a surjection, by choice of xi. We claim it is an injection.
Suppose for a contradiction that f ∈ k[t1, . . . , td] is a nonzero element in the kernel. We
may as well assume that it is homogeneous, by passing to a homogeneous component. Then
k[t1, . . . , td]/(f) is a graded ring, with

d(Gm(A)) ≤ d(k[t1, . . . , td]/(f) = d(k[t1, . . . , td])− 1 = d− 1.

The first inequality because Gm(A) is the homomorphic image of k[t1, . . . , td]/(f), and
the equality is by the lemma below. We have obtained a contradiction to the dimension
theorem, however. �

Lemma 5.22. (We could just as easily have proved this earlier. . .) Let f ∈ A be a homoge-
neous element which is a nonzerodivisor on a fg graded S-module M . Here S is a graded
Noetherian ring, with the usual assumptions on it. Then

d(M/fM) = d(M)− 1.

Proof. Let c = deg(f). We have an exact sequence

0→M(−c) ·f−→M →M/fM → 0.

Then FM/fM = (1 − tc)FM . Note 1 − tc has a simple zero at t = 1, so d(M/fM) =
d(M)− 1. �

Proposition 5.23. Regular local rings are domains.

Proof. This is not at all obvious, but we omit it. See [AM69, 11.23]. �

Example 5.24. Regular local rings of dimension 0 are fields, since here m = 0.

Example 5.25. Regular local rings of dimension 1 are exactly discrete valuation rings.

This can be taken as the definition of DVR. But we’ll start by defining DVRs differently,
and then deducing that they are exactly regular local rings of dimension 1.
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42. Discrete valuation rings

Source is [AM69, p. 94].

Definition 5.26. Let K be a field. A discrete valuation is a surjective homomorphism of
abelian groups v : K∗ → Z such that

v(x+ y) ≥ min v(x), v(y).

Often set v(0) = +∞. The valuation ring is {x ∈ K | v(x) ≥ 0}. Note this is a subring, by
definition of v, and contains contains 1 since v(1) = 0.

Definition 5.27. A discrete valuation ring is an integral domain A that arises as the valu-
ation ring of some valuation on FracA.

Example 5.28.

(1) Meromorphic functions on a neighborhood U of x; order of zero or pole at x.
(2) K = Q, p-adic valuation. The valuation ring is Z(p).
(3) Similarly, K = k(x), f ∈ k[x] irreducible.

Let v be a discrete valuation on K, with A its valuation ring. Let us make some
preliminary observations. First, for nonzero x ∈ K, have v(x−1) = −v(x). So if x ∈ A,
then x is a unit iff v(x) = 0. The ideal m = {x ∈ A | v(x) > 0} is therefore the unique
maximal ideal of A. Note mn = {v(x) ≥ n}. Furthermore there are no other nonzero
ideals: given x, y ∈ A, we have v(x) = v(y) iff x = yu for some unit u. So for any nonzero
ideal I, if x ∈ I is a nonzero element of smallest valuation c, then I contains all elements
of valuation ≥ c and no others, so I = mc.

Here’s the main theorem on DVRs. Basically, in the case of a Noetherian local domain
of dimension 1, the properties of normality, regularity, and being a DVR all coincide. We’ll
follow [AM69] closely.

Proposition 5.29. [AM69, 9.2] Let (A,m) Noetherian local domain of dimension 1. Write
k = A/m. TFAE:

(1) A DVR
(2) A normal
(3) m principal
(4) dimk m/m

2 = 1
(5) every nonzero ideal is a power of m
(6) there exists x ∈ A such that every nonzero ideal is of the form (xk).

Let (A,m) Noetherian local domain of dimension 1. Before the proof of the above
theorem, some facts.
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Fact A. Any nonzero proper ideal I is m primary, with a ⊃ mn for some n. Indeed,√
I = m (what else could it be? there aren’t a lot of prime ideals lying around), and

Noetherianness then implies that m ⊃ I ⊃ mn for some n.
Fact B. Have m ) m2 ⊇ · · · , for otherwise A would have dimension 0, as we learned in

the chapter on Artinian rings.

Proof. (1) implies (2). Let x ∈ K = FracA with

xn + a1x
n−1 + · · ·+ an = 0, ai ∈ A.

Then v(x) ≥ 0, otherwise v(xn) < min v(a1x
n−1), . . . , v(an), contradiction.

(2) implies (3). The most substantial step. Pick any nonzero a ∈ m, and let n > 0
minimum such that (a) ⊇ mn; that’s possible by Fact A. By minimality of choice of n,
there exists some b ∈ mn−1 \ (a). Let x = a/b ∈ FracA. We claim (x) = m.

To prove the claim, notice x−1 = b/a 6∈ A since b 6∈ (a). Since A is normal, x−1 is not
integral over A. Now, consider x−1m = {(b/a) · y : y ∈ m}. This is actually a subset of A,
since by ∈ mn−1 · m = mn ⊆ (a). Then in fact x−1m is an ideal of A. Which ideal is it?
If x−1 ⊆ m then m would be a faithful A[x−1]-module, finitely generated as an A-module;
then Cayley-Hamilton would imply that x−1 is integral over A. Contradiction! Therefore
x−1m = A is the whole ring. Then m = Ax = (x), as desired.

(3) implies (4), we already know this, e.g., from the dimension theorem. Or: any
generator for m has homomorphic image generating m/m2, and we don’t have m/m2 = 0
because A would be Artinian.

(4) implies (5): Note Nakayama implies m = (x) is principal. Let I 6= A be a nonzero
ideal. By Fact A, consider the smallest n > 0 with I ⊇ mn = (xn); we claim I ⊆ mn too, so
that I = mn. Suppose for a contradiction there is some z ∈ I \ mn, and write z = axr for
r biggest possible; in particular r < n. Then a 6∈ (x) so a is a unit, so then I ⊇ (z) = (xr),
contradicting minimality of n.

(5) implies (6): Here we are assuming that every nonzero ideal is of the form mn, and
want to show that there exists x ∈ A such that every nonzero ideal is of the form (xn).
Therefore it suffices to prove m = (x) for some x. Indeed, take x ∈ m\m2, which is possible
since m/m2 6= 0 by Fact B, say. Then the ideal (x) is some power of m, but it’s not m2 or
any higher power, so it must be that (x) = m.

(6) implies (1). We have m is one of the ideals in the chain (x) ⊇ (x2) ⊇ · · · so it must
be the biggest one: m = (x). So (x), (x2), . . . are all distinct by Fact B. Given a ∈ A \ {0}
we have (a) = (xr) for some unique r; set v(a) = r, and extend v to FracA by setting
v(a/b) = v(a)−v(b). Then check v satsfies v(ab) = v(a)+v(b), and v(a+b) ≥ min v(a), v(b),
so v is a valuation on K.

Moreover, check that A really is the valuation ring with respect to v: suppose v(a/b) ≥ 0

for nonzero a, b ∈ A. Then v(a) ≥ v(b), so (a) = (xv(a)) ⊆ (xv(b)) = (b). So a ∈ (b) and
a/b ∈ A after all. �
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