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Abstract. This is a concise expository survey of cluster algebras,
introduced by S. Fomin and A. Zelevinsky in their four-part series
of foundational papers [1], [2], [3], [4] (the paper [3] is with coauthor
A. Berenstein). Our primary focus is on Cluster Algebras IV: Co-
efficients [4]. We introduce the setting of principal coefficients and
define and study F-polynomials and g-vectors. Along the way, we
mention the Laurent phenomenon and the classification of cluster
algebras of finite type.

1. What is a cluster algebra?

A cluster algebra is a particular kind of commutative subalgebra of a
field of rational functions. One specifies a cluster algebra by describing
its generators. But instead of providing an a priori infinite list of gen-
erators, one gives instead an initial finite set of them, and, in addition,
an iterative method of producing new generators from old ones. This
method is a combinatorial process which we call mutation.

Cluster algebras were introduced in 2002 by S. Fomin and A. Zelevin-
sky in their four-part series of foundational papers [1], [2], [3], [4] (the
paper [3] is with coauthor A. Berenstein). They were developed as a
hopeful tool for studying total positivity and canonical bases of alge-
braic groups; since then, they have seen connections to many different
fields, including tropical geometry and Teichmüller theory, and have
generated a phenomenal amount of interest in their own right.

The precise definition of a cluster algebra will take several pages to
develop. This will occupy the rest of Section 1. In Sections 2 and 3,
we touch on the Laurent phenomenon (Theorem 2.1), the Positivity
Conjecture (Conjecture 2.2), and the classification of cluster algebras
of finite type (Theorem 3.2). Section 4 contains a survey of the paper
[4]; we develop the theory of F-polynomials and g-vectors for cluster
algebras with principal coefficients. We conclude in Section 5 with the
example of affine Grassmannians (2, n).

Let us work towards the definition of a cluster algebra by recalling
the notion of a semifield.

1



2 MELODY CHAN

A semifield P is an abelian group, written multiplicatively, which
is endowed with a binary operation ⊕ called auxiliary addition. This
operation is required to be commutative, associative, and distributive
under group multiplication. Thus, a semifield has all of the properties
of field, except possibly for the existence of an additive identity and
additive inverses.

Our primary example of a semifield is the tropical semifield of
rank n, denoted Trop(y1, . . . , yn), which consists of the set of Laurent
monomials in the variables y1, . . . , yn

{ya1

1 · · · yan

n : a1, . . . , an ∈ Z}.

Multiplication and addition are given by

ya1

1 · · · yan
n · yb1

1 · · · ybn
n = ya1+b1

1 · · · yan+bn
n ,

ya1

1 · · · yan
n ⊕ yb1

1 · · · ybn
n = y

min(a1,b1)
1 · · · y

min(an,bn)
n .

Note that identifying monomials with their exponents vectors identifies
Trop(y1, . . . , yn) with the integer points in the tropical semimodule
(Rn,⊕,⊙).

Let us fix some notation. If s = (s1, . . . , sn) and b = (b1, . . . , bn) ∈
Zn, then we write sb for sb1

1 · · · sbn
n . Given an integer x, we let [x]+ =

max{x, 0} and [x]− = max{−x, 0}, and we extend this notation to
vectors by applying it coordinatewise. For example,

[(3,−4)]+ = (3, 0) and [(3,−4)]− = (0, 4).

Given an element t ∈ P, define elements

t+ := t/(t ⊕ 1) and t− := 1/(t ⊕ 1).(1)

Notice that t = t+/t− and t+ ⊕ t− = 1. For example, if t = (3,−4),
regarded as an element of the tropical semifield of rank 2 by identifying
Laurent monomials with their exponent vectors, then t+ = (3, 0) and
t− = (0, 4). We can view t+ and t− as the positive and negative parts,
respectively, of t.

Lemma 1.1. Let P be a semifield, and let ZP denote the group ring
associated to the multiplicative group P and the ring of integers Z. Then
ZP is an integral domain.

Proof. Notice that the multiplicative group P must be torsion-free [1,
Section 5]: indeed, if pm = 1, then

p · (pm−1 ⊕ · · · ⊕ 1) = 1 ⊕ pm−1 ⊕ · · · ⊕ p implies p = 1.

Now, we argue, following [6, Theorems 6.29, 6.31], that ZP has no
zero divisors. First, we note that the group ring ZG associated to any
ordered group (G,<) has no zero divisors: if a = n1g1 + · · ·+ nkgk and
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a′ = n′
1g

′
1 + · · ·+ n′

lg
′
l are two nonzero elements of ZG, where ni, n

′
j are

nonzero integers and g1 < · · · < gk and g′
1 < · · · < g′

l are elements of G,
then the coefficient of g1g

′
1 in the product aa′ is n1n

′
1 6= 0. So aa′ 6= 0.

Then it suffices to show that P can be ordered. Indeed, we now show
that any torsion-free abelian group A can be ordered. Note that A
embeds into a Q-vector space via A →֒ A ⊗Z Q, so we may assume A
is a Q-vector space. Choose and linearly order a basis of A over Q.
Given an element

a = λ1v1 + · · · + λnvn ∈ A

where λ1, . . . , λn ∈ Q, and v1 < · · · < vn are basis elements, say that a
is positive if λ1 > 0. Then the relation on A given by a < b whenever
ba−1 is positive is a linear order on A. �

Now, fix a semifield P. Lemma 1.1 implies that the group ring ZP

is a domain, so we write K for the field of fractions of ZP. (We can
now safely forget about Lemma 1.1.) Let F denote the field of rational
functions in n indeterminates x1, . . . , xn, with coefficients in ZP, thus

F = K(x1, . . . , xn).

For example, if P = Trop(y1, . . . , yn), then ZP = Z[y±

1 , . . . , y±
n ] and

K = Q(y1, . . . , yn). Note that the addition operation ⊕ does not play
a role in the definition of F , but it will appear in the definition of a
cluster algebra, Definition 1.4.

A labeled seed is an ordered triple

((s1, . . . , sn), (t1, . . . , tn), B),

satisfying the following conditions:

• s1, . . . , sn ∈ F are algebraically independent over K,
• t1, . . . , tn ∈ P, and
• B is an n × n matrix of integers that is skew-symmetrizable;

that is, one may scale the rows of B by positive numbers to
obtain a skew-symmetric matrix.

We call the si variables cluster variables, the tj variables coefficient

variables, and B the exchange matrix of the seed (s, t, B).
Now, suppose we are given a labeled seed (s = (s1, . . . , sn), t =

(t1, . . . , tn), B) and an integer k ∈ {1, . . . , n}. Then the seed obtained

by mutation of (s, t, B) in direction k is the ordered triple (s′ =
(s′1, . . . , s

′
n), t′ = (t′1, . . . , t

′
n), B′) defined as follows.

• For j ∈ {1, . . . , n} \ k, we let s′j = sj, and we let

s′ksk = t+k s[Bk]+ + t−k s[Bk]− ,(2)
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where Bk denotes the kth column vector of the matrix B.
• For j ∈ {1, . . . , n} \ k, let

t′j = tj ·
(t+k )[bkj ]+

(t−k )[bkj ]−
,(3)

and let t′k = t−1
k .

• For i, j ∈ {1, . . . , n}, if i = k or j = k, let b′ij = −bij. Otherwise,
let

b′ij = bij + [bik]+bkj + bik[bkj]−.(4)

Remark 1.2. One may check that the new triple (s′, t′, B′) really is
another labeled seed, and furthermore, that mutation in direction k of
(s′, t′, B′) yields the original seed (s, t, B).

Remark 1.3. The notation above loosely follows the notation of [2,
Section 1.2], and has the advantage that it makes the symmetry in
Remark 1.2 apparent. We can, however, use the definitions of t+ and
t− in (1) to rewrite the relations (2) and (3). The cluster exchange
relation (2) becomes

s′ksk =
tks

[Bk]+ + s[Bk]−

tk ⊕ 1
,(5)

and the coefficient exchange relation (3) becomes

t′j = tj · t
[bkj ]+
k (1 ⊕ tk)

−bkj .(6)

This presentation follows [4] and will be the starting point of the dis-
cussion of F -polynomials and g-vectors in Section 4.

Now, let Tn denote the infinite n-ary tree, that is, a connected
acyclic simple n-regular graph. Equip Tn with an n-edge coloring.
For example, T2 is an infinite two-way path, and we give its edges
alternating colors. A cluster pattern is an assignment of labeled
seeds to the vertices of Tn such that for any edge, say between vertices
v and v′ and of color k ∈ {1, . . . , n}, the seeds associated to v and v′

are obtained from each other by mutation in direction k.
We are finally equipped to define a cluster algebra.

Definition 1.4. A cluster algebra A of rank n is the K-subalgebra of
F = K(x1, . . . , xn) which is generated by the set of all cluster variables
in some cluster pattern on Tn.

We say that A is of geometric type if the semifield P is a tropical
semifield. In Section 4, we will discuss a very interesting situation that
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arises among cluster algebras of geometric type: the case of principal
coefficients.

These definitions are quite opaque at first glance, so in Section 5,
we will provide a family of familiar examples. We will prove that
the coordinate ring of the affine Grassmannian C[Gr(2, n)] carries the
structure of a cluster algebra, with 3-term Plücker relations playing the
role of cluster exchange relations.

2. The Laurent phenomenon

Theorem 2.1. [1, Theorem 3.1, Laurent Phenomenon] Let A be a
cluster algebra over semifield P, let (s1, . . . , sn) be any cluster, and
let x be any cluster variable. Then x can be expressed as a Laurent
polynomial in s1, . . . , sn with coefficients in ZP.

In [1], Fomin and Zelevinsky conjectured that the coefficients of the
Laurent polynomials in Theorem 2.1 are always positive combinations
of semifield elements.

Conjecture 2.2. [1, Positivity Conjecture] The Laurent polynomials
in Theorem 2.1 have coefficients of the form n1p1 + · · · + nkpk, where
n1, . . . , nk are positive integers and p1, . . . , pk ∈ P.

The positivity conjecture has been studied extensively; many authors
have proved special cases. For example, it has been proved for cluster
algebras of finite type [4, Corollary 11.7], and for cluster algebras of
geometric type arising from surfaces [7, Theorem 1.1].

3. Cluster algebras of finite type

Definition 3.1. A cluster algebra is of finite type if the set of distinct
seeds in the associated cluster pattern is finite.

This section summarizes several important theorems from the paper
[2]. We need some definitions to make sense of the main theorem,
Theorem 3.2, which characterizes finite type cluster algebras.

The Cartan counterpart of an integer square matrix is the matrix
obtained by replacing each off-diagonal entry with the negative of its
modulus and setting all diagonal entries equal to 2. A matrix B ∈ Zn×n

is sign-skew-symmetric if for all i, j ∈ {1, . . . , n}, bij = bji = 0
or bijbji < 0. Given a sign-skew-symmetric matrix B ∈ Zn×n, the
diagram associated to B is the edge-weighted directed graph on
vertices {1, . . . , n} with a directed edge from i to j, of weight |bijbji|,
whenever bij > 0.
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Theorem 3.2. [2, Theorems 1.5, 1.6, 1.8] Let A be a cluster algebra.
The following are equivalent:

(1) A has finite type.
(2) For some exchange matrix B of a seed (s, t, B) in the cluster pat-

tern, the diagram associated to B is an orientation of a Dynkin
diagram.

(3) For some exchange matrix B of a seed (s, t, B) in the cluster
pattern, the Cartan counterpart of B is a Cartan matrix.

(4) For all seeds (s, t, B) of A, the matrix B satisfies |bijbji| ≤ 3
for all i, j ∈ {1, . . . , n}.

Thus, if A is a finite type cluster algebra, then we say that it has type

An, Bn, Cn, Dn, E6, E7, E8, F4, or G2 according to the Cartan-Killing
classification of its corresponding Dynkin diagram, or equivalently of
its corresponding Cartan matrix. That this notion of type is well-
defined is a consequence of [2, Theorem 1.4], which we omit from this
survey.

4. F-polynomials and g-vectors

Let A be a cluster algebra arising from a cluster pattern on the infi-
nite n-ary tree Tn, and let P be the underlying semifield. We say that A
has principal coefficients at a vertex v0 ∈ Tn if P = Trop(t1, . . . , tn),
where (t1, . . . , tn) is the n-tuple of coefficient variables in the labeled
seed at v0.

The case of principal coefficients is very interesting and we will sum-
marize some of the main theorems, following the treatment in [4, Sec-
tions 4-6]. We will see that a cluster algebra with principal coefficients
has a natural Zn-grading; this leads to the notion of a g-vector. We
will also see that the Laurent polynomials expressing a given cluster
variable in terms of an initial cluster in a cluster algebra with principal
coefficients are sufficient to recover the corresponding Laurent poly-
nomials for an arbitrary cluster algebra. We will do this by studying
F-polynomials.

Suppose a cluster algebra A has principal coefficients at vertex v0;
let

((s1, . . . , sn), (t1, . . . , tn), B)

be the labeled seed at v0, so P = Trop(t1, . . . , tn). Let sl,v be the cluster
variable in the lth coordinate of the labeled seed at vertex v ∈ Tn. We
would like to write sl,v in terms of s1, . . . , sn. We can do so by applying
the mutations (2), (3), and (4) along the unique path from v0 to v in
Tn. Now, since every tropical sum of elements of P is just a monomial
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in t1, . . . , tn, we see inductively that sl,v can be written as a subtraction-
free rational expression in s1, . . . , sn, t1, . . . , tn. For clarity:

Definition 4.1. The semifield Qsf (x1, . . . , xn) of subtraction-free

rational expressions in n variables consists of those rational functions
f ∈ Q(x1, . . . , xn) such that f · q = p for some polynomials p, q with all
coefficients positive. (It is clear that these elements form a semifield.)

Definition 4.2. Let A be a cluster algebra with principal coefficients
at vertex v0, and let (s, t, B) be the labeled seed at v0. Let v be any
vertex of Tn, and let l ∈ {1, . . . , n}. Then define

Xl,v ∈ Qsf (x1, . . . , xn, y1, . . . , yn)

to be the subtraction-free rational expression such that

sl,v = Xl,v(s1, . . . , sn, t1, . . . , tn).

Note that Xl,v is uniquely defined since s1, . . . , sn are algebraically in-
dependent.

Now we can define the F-polynomial.

Definition 4.3. With A, v0, v, and l as in Definition 4.2, define the
F-polynomial Fl,v by setting all x variables in Xl,v to 1:

Fl,v(y1, . . . , yn) := Xl,v(1, . . . , 1, y1, . . . , yn) ∈ Qsf (y1, . . . , yn).

Proposition 4.4. [4, Proposition 3.6] Each Xl,v is an element of
Z[x±

1 , . . . , x±
n , y1, . . . , yn], and each Fl,v is an element of Z[x1, . . . , xn].

In fact, it is conjectured that the coefficients of Xl,v and of Fl,v are
always positive integers [4, Section 3]. This is proved for cluster al-
gebras of finite type [4, Corollary 11.7]. In view of Theorem 4.7, the
aforementioned conjecture is a reformulation of Conjecture 2.2.

Next, we note that a cluster algebra A of rank n with principal
coefficients has a natural Zn-grading.

Proposition 4.5. [4, Proposition 6.1, Corollary 6.2] Let A be a clus-
ter algebra with principal coefficients at v0; let (s, t, B) be the labeled
seed at v0. Then every polynomial Xl,v, as given in Definition 4.2, is
homogeneous with respect to the multigrading

deg : Z[x±

1 , . . . , x±

n , y1, . . . , yn] → Zn

sending xi 7→ ei and yi 7→ −Bi, where Bi denotes the ith column of the
matrix B.

Thus, A is a Zn-graded Z-subalgebra of Z[x±

1 , . . . , x±
n , y1, . . . , yn].
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Definition 4.6. We let gl,v ∈ Zn be the degree of the cluster variable
sl,v according to the grading in Proposition 4.5. These vectors are
called g-vectors.

In fact, we will see in Theorem 4.7 that the F-polynomials and g-
vectors of a cluster algebra A with principal coefficients completely
determine formulas for the cluster variables of an arbitrary cluster al-
gebra.

To state Theorem 4.7, we need some notation: if F is a subtraction-
free rational expression and P is a semifield, let F |P denote the semifield
polynomial that is obtained by writing F using only addition, multipli-
cation, and division, then replacing usual operations with operations
from the semifield P.

Theorem 4.7. [4, Corollary 6.3] Let A′ be any cluster algebra, and
let (x, y, B) denote the seed at vertex v0. Let A be the unique (up
to isomorphism) cluster algebra with principal coefficients at v0 whose
labeled seed at v0 has exchange matrix equal to B.

Given a vertex v of Tn and l ∈ {1, . . . , n}, associate to A the F-
polynomial Fl,v and the g-vector g = gl,v as in Definitions 4.3 and 4.6.
Then the cluster variable of A at the lth coordinate of vertex v, denoted
xl,v, is given by

xl,v =
Fl,v(ŷ1, . . . , ŷn)

Fl,v|P(y1, . . . , yn)
xg1

1 · · ·xgn

n ,(7)

where ŷi denotes the degree-0 element yi · x
B1,i

1 · · ·x
Bn,i
n , for each i =

1, . . . , n.

Remark 4.8. Equation 7 demonstrates the separation of addition phe-
nomenon: notice that the numerator contains all instances of group
ring addition in ZP, while the denominator contains all instances of
the semifield addition in P.

Another sense in which the case of principal coefficients is universal
is with regard to exchange graphs. First, let us define an equivalence
relation on labeled seeds, where (s, t, B) ∼ (s′, t′, B′) if (s′, t′, B′) can be
obtained from (s, t, B) by a simultaneous permutation of the entries of
s, the entries of t, and the rows and columns of B. Then the exchange

graph of a cluster algebra A is the graph on equivalence classes of
labeled seeds of A with an edge between two classes if and only if they
have representatives which are obtained from each other by a single
mutation.

Note that the exchange graph G(A) is therefore equipped with a
canonical surjective graph homomorphism pA : Tn ։ G(A) sending a
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vertex of Tn to the equivalence class of its labeled seed. (A homomor-
phism G → H of graphs is a map V (G) → V (H) of sets that sends
adjacent vertices in G to adjacent vertices in H.)

Now, given cluster algebras A and A′ of rank n, we say that the graph
G(A) covers the graph G(A′) if there exists a graph homomorphism
φ such that the diagram

G(A) G(A′)
φ

//

Tn

G(A)

pA

���
�
�
�
�
�
�
�
�
�
�
�

Tn

G(A′)

pA′

��

commutes.

Theorem 4.9. Let A′ be any cluster algebra of rank n, and let B be the
exchange matrix of A′ at the vertex v ∈ Tn. Let A be the unique rank
n cluster algebra with exchange matrix B at v and principal coefficients
at v. Then G(A) covers G(A′).

In fact, the following much stronger statement is conjectured to be
true:

Conjecture 4.10. [4, Conjecture 4.3] The exchange graph G(A) of a
cluster algebra A does not depend on the choice of coefficients. More
precisely, if A and A′ are two cluster algebras such that the matrix B
occurs as an exchange matrix for each, then G(A) = G(A′).

Conjecture 4.10 is known to hold for cluster algebras of finite type
[2, Theorem 1.13] and for cluster algebras of rank 2 [2, Example 7.6].

5. Example: Affine Grassmannians of 2-planes

In this section, we will sketch the proof that for each n ≥ 4, the affine
cone over the complex Grassmannian Gr(2, n) is a cluster algebra of
classical type An−3. Our reference throughout is Section 12.2 of [2].

Fix n ≥ 4, let S denote the polynomial ring C[z12, z13, . . . , zn−1,n] in
(

n

2

)

variables, and let I ⊆ S be the ideal of 3-term Plücker relations

I = 〈zijzkl − zikzjl + zilzik : i, j, k, l ∈ [n] distinct〉.

By the affine cone over the Grassmannian Gr(2, n), we mean Spec(S/I).
The cluster complex ∆(A) of a cluster algebra A is defined to be

the simplicial complex whose ground set is the set of cluster variables of
A and whose maximal cells are the clusters. If A is of type An−3, then
∆(A) is known to be the dual complex of the rank n associahedron,
a polytope whose vertices correspond to triangulations of the plane
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polygon Pn with n vertices. The exchange graph G(A) is then the 1-
skeleton of the associahedron. Two triangulations are adjacent in G(A)
if they differ by a single flip of a diagonal.

Now let A be the cluster algebra of type An−3 defined as follows. We
let

P = Trop(pab : ab is a side of the polygon Pn).

We associate, to each diagonal ij of Pn used in a triangulation, the
cluster variable xij, so that each triangulation is labeled with a cluster
of size n. For convenience, we set xij = 1 if ij is a side, not a diagonal,
of Pn. Then the exchange relations (2) for A are given by

xacxbd = p+
ac,bdxabxcd + p−ac,bdxadxbc

where a, b, c, d are distinct vertices of Pn occurring in counterclockwise
order. Here, we define

p+
ac,bd = pabpcd and p−ac,bd = padpbc,

where again, for convenience of notation, we let pij = 1 if ij is a
diagonal, and not a side, of Pn.

Finally, given a triangulation T of Pn, we let B(T ) be the square
matrix indexed by the n diagonals of Pn occurring in T , with entries
given as follows. We set Bxy = 1 if x and y are diagonals of Pn that
occur in clockwise order as sides of a triangle in T , and we set Bxy = −1
if x and y occur in counterclockwise order as sides of a triangle in T .
Otherwise, we set Bxy = 0.

We may check that these coefficients and exchange matrices satisfy
the exchange relations (3) and (4), so A is well-defined. Finally, we
can make use of the following criterion from [2, Proposition 11.1], as
formulated in [8, Proposition 1]:

Proposition 5.1. Let A be a cluster algebra of rank n, let X be the set
of cluster variables of A, and let C be the set of coefficients (satisfying
the mild assumption of [2, (11.2)]. Let Y be a rational quasi-affine
irreducible algebraic variety over C. Suppose we are given elements of
C[Y ]: one for each x ∈ X, say φx, and one for each c ∈ C, say φc,
such that the elements

{φx : x ∈ X} ∪ {φc : c ∈ C}

generate C[Y ]. Suppose further that dim(Y ) = n + |C| and that each
exchange relation in A remains valid in C[Y ] under the maps x 7→ φx

and c 7→ φc.
Then the correspondences x 7→ φx and c 7→ φc extend uniquely to an

algebra isomorphism from A to C[Y ].
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We can check that the cluster algebra we have constructed satisfies
the conditions of the above proposition with respect to the coordinate
ring C[Gr(2, n)]. In particular, the exchange relations remain valid
in C[Gr(2, n)] precisely because they become 3-term Plücker relations.
Thus C[Gr(2, n)] has the structure of a cluster algebra of type An−3.
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