GEOMETRY AND GROWTH IN THREE DIMENSIONS
GRAY SON, MATTHEW AARON
ProQuest Dissertations and Theses; 1983; ProQuest Dissertations & Theses Global

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce

this

document, the quality of the reproduction is heavily dependent upon the

quality of the material submitted.

The

following explanation of techniques is provided to help clarify markings or

notations which may appear on this reproduction.

1.

[§S)

The sign or “‘target” for pages apparently lacking from the document
photographed is ‘““Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

. When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of “sectioning” the material has been foliowed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.

Uni i
l\v/ﬁrcsrgyﬁlms
International

300 N. Zeeb Road
Ann Arbor, M1 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8318719
Grayson, Matthew Aaron
GEOMETRY AND GROWTH IN THREE DIMENSIONS

Princeton University Pu.D. 1983

University
Microfilms
International swon. zesb Road. Ann Arbor, Mi 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark__ v .

ad

©® ©® N o o » 0 D

—t -
- (]
. .

12,
13.
14,
15.

Glossy photographs orpages

Colored illustrations, paper or print____

Photographs with dark background ____

lllustrations are poorcopy

Pages with black marks, not original copy

Print shows through as there is text on both sides of page
Indistinct, broken or small print on several pages

Print exceeds margin requirements _____

Tightly bound copy with print lost in spine JL

Computer printout pages with indistinct print

Page(s) lacking when material received, and not available from school or
author.

Page(s) seem to be missing in numbering only as text follows.

Two pages numbered . Text follows.

Curling and wrinkled pages

Other

University
Microfilms
International

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



GEOMETRY AND GROWTH IN THREE DIMENSIONS

by

Matthew Aaron Grayson

A thesis
presented to Princeton University
in partial fulfillment of the
requirements for the degree of
Ph.D.
in
Mathematics

Princeton, New Jersey, 1983

© Matthew Aaron Grayson, 1983

Reprod-uced with permission of the copyright owner. Further reproduction prohibited without permission.



TRRF LRI VPO LU EREFICP T ARV I R IRE ST RN

To my Mother and Father

tae i i it it o il

VSl 4 et A D 8 e o

T2 RUNEVE - FERVEA

ndii

e

COCE PRSI AN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

We investigate the connection between geometry of three manifolds
and the combinatorics of their fundamental groups, e.g., growth func-

tions. In most cases, we derive explicit expressions for the growth

function.

We look at orbifolds whose fundamental groups are generalizations of

NP R P R

right angle reflection groups, and see a strong connection between the
geometry of their fundamental domain, and the growth functions of their

fundamental groups. In particular, the growth function depends only

B

on the fundamental domain, and not on the choice of an identification of

its boundary. Important examples are the alternating link complements

e faa i

2 in the three-sphere. The growth functions of their fundamental groups

depend only on the number of crossings.

i We also look at Solv geometry and its geodesics, and the combinator-
ics of fhe fundamental groups of torus bundles over the circle. We
find the closed geodesics representing the free homotopy classes in to-

rus bundles. In many classes, there are a number of different lengths

~ pR RN R L L et

of closed geodesics. Each length has a unique representative up to
isometry.

We Iook_ at the gepmetry SL2, which models non-trivial Seifert fiber
spaces with hyperbolic base orbifolds. We show that there is a group

whose growth restricted to a subgroup is irrational.
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Chapter |

INTRODUCTION

Look at a torus. It is the quotient of the plane by Z*Z. It also has a
flat geometric structure. Look at its fundamental group a different
way. Take Z+*Z with the standard generators. Given a group with
generators, we can form the graph of the group. The vertices of the

graph T are the elements of the group G. Two vertices, x and y, are

‘ joined by an edge if there is a generator g such that gx=y. With the

‘ standard generators, the graph of Z+Z looks like graph paper:

A R R IR A e R T e

o
l b ab

o d o iy
Y 5!

T6

Consider the graph metric which assigns lengfh one to each edge.

We can now ask about the sphere of radius r. It consists of those ele-
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2

ments of G whose minimal representations as words in the generating
set have length r.

Let a, = the number of group elements of minimal length i. This is
called the growth sequence of G with chosen generators. The generat-

ing function for this sequence we will call the growth function

w -
Sy (s) = Z ais'

{Asiuiatar s oniit KoL B

1=0

J We can also look at the number, bi' of elements which have minimal
4
3
° representations of length less than or equal to i. We get
4 2 (s) = (1-s) Z bs'.
i izo |
:
Back to the torus. We can write down the growth function by in-
spection.
.
: b
( _\b
& ob
) a 1
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But what is happening?

On the sphere of radius r in this graph, there are two kinds of be-
haviour. Some points have a unique predecessor, others have two.
Call them type 1 and type 2 points. A type one point contributes one
type one point and half of two type 2 points in the next layer. A type

2 point has a half share in each of two type 2 points in the next layer.
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_é If a layer has x type 1 points and y type 2 points, then the next layer
will have
3 1 O) X X type 1
: 1 1ty x*ty] type 2

Note the similarity between the characteristic polynomial of this matrix
~ and the denominator of the growth function.
There are alot of manifolds with fundamental groups. An interesting

‘ subcategory is the manifolds with geometric structures, that is, mani-
folds whose fundamental groups are represented as discrete subgroups

~of the group of isometries of some geometry. See Thurston[i2] or

Scott[10]

R o i e R B b P e B B
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3 Our Purpose is to study the relationship between geometry and com-
binatorics, e.g., growth functions, for geometric three dimensional ma-
nifolds. Much is already known about this relationship. Milnor[ 8 ]

has shown that a compact negatively curved manifold's fundamental

3 group has exponential growth for any set of generators. That is,

there exist constants C>0 and a«>1 such that

ai
3 > Ce

We say that a sequence has polynomial growth if there exist con-

stants N and n such that

a. < Ni".

Gromov[ 6 ] has shown that the growth of the fundamental group is
polynomial iff the fundamental group has a nilpotent subgroup of finite
index.

Wolf[13] has shown that for finitely generated solvable groups, one
can determine whether the growth is polynomial or exponential. In par-
ticular, the growth of the fundamental group of a torus bundle over a

circle is exponential iff the monodromy is Anosov.
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The rationality question is also interesting. Cannon[S] has shown
that the growth function for the fundamental group of a hyperbolic ma-

nifold is rational, regardless of the choice of generating set.

NN T

Benson[ 1] has shown the same for Euclidean manifolds.

In this thesis, we investigate some classes of examples of geometric
three-manifolds and their growth functions. For ihis purpose, it is
sometimes necessary to pick a preferred generating set to render the

computations bearable.

Chapter 2 deals with groups which are generalizations of hyperbolic

i e s FEAL

el

right angle reflection groups. The growth functions depend only on
; some simple combinatorial data about the fundamental domain. An appli-

cation to alternating links is given at the end of the chapter. An al-

et e e VR 3B

ternating projection gives rise to a set of generators for the fundamen-
tal group of the complement of the link in the three-sphere. The
growth function for this presentation depends only on the number of
crossings of the link under that projection.

Chapter 3 is an excursion into one of the eight three-manifold geo-
metries; Solv. This geometry models the torus bundles over the circle
with Anosov monodromy. We find, among other things, the closed geo-
desics representing the free homotopy classes of a given torus bundle.
This work stems from an attempt to understant spheres in the group
graph by looking at metric spheres in the universal cover. The behav-
iour of geodesics mimics closely the growth of words in the fundamental

groups of torus bundles.

i
]
-4
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Chapter 4 looks at the actual growth functions of torus bundles with
Anosov monodromy.

Chapter 5 takes a look at another geometry, that modelled on SL2R,
and the strange behaviour of the graphs of fundamental groups of cir-

cle bundles over surfaces.

1.1 SOME INTERESTING FACTS ABOUT GROWTH FUNCTIONS
Suppose that we have groups F and G with generating sets {fi}, and
{gj}, respectively. Let f(s) and g(s) denote the growth funtions of F

and G with these generators, then

L R P P ey T oy
STk aws bt

1.1.1 Proposition

Let H be the direct sum of F and G with generators {(fi,id)} {(id,gj)}.

Then the growth function for H, h(s) is given by:

h(s) = f(s)g(s).

Proof: The length of a word (x,y) in H is the sum of the length of

x in F plus the length of y in G. The proposition follows immediately.

i
i

3
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1.1.2 Proposition

Let H be the free product of F and G, then

f(s)g(s)
h(s) =
f(s) *+ g(s) - f(s)g(s)
3 Proof: Start counting. ‘G'
id ’ F
& ¢ [} (5t)-1y + (9(8)-1)

%F 261 (8(> 1)
/o \

ete.

$O:

heo)= L+ (§()-1) + ($(s)-1)(5()-1)+ (’r(s]-i\z(‘j(s)-i) + (4(5)-11(4Cs) 1) - -
+ (911 + (§()-1) (S(8)-1) + (§()-L)*($5)-1) + (90sy-4y (5D~ 1) ..

Which simplifies to the desired formula.

i
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9
Some useful consequences, which can be arrived at easily by other
means, are the growth functions of the free groups, and the free abeli-

an groups. The growth function of the free abelian group of rank n is

(1*5"
1-5s

i R A GRS

i The growth function for the free group of rank n is

1+s

1 - (2n-1)s

Now suppose that the growth function really is rational, then we can

RO LT F

see that the denominator must have constant term 1. If not, then the
sequence of coefficients of the power series for the growth function
would not have integral coefficients. Therefore, the roots of the de-
nominator, and hence the poles of the growth function, are located at

the inverses of algebraic integers.
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1.1.3 Proposition

The exponential growth of the coefficients of the power series of a ra-
tiona! function is determined by the norm of the inverse of the smallest
root of the denominator. (Assuming that the numerator and the denom-
inator have no roots in common).

Sketch of Proof: This is fairly easy. One good way to see it is by
constructing a matrix which gives the terms in the power series as fol-
lows:

M has 1's on the super diagonal, and the bottom row has the coeffi-

cients of the denominator written in decreasing order, that is, if

g(s) = p(s)/q(s)

and

q(s) = q5 * qqs ¢ q252 t.otars,
then the bottom row of M is

a, » 9.1 - ¢ 97 4 9
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Now if V is a vector consisting of n*1 consecutive terms in the se-

by
#
4
A
¥

quence of coefficients, say from a, toa, ., then (M)V wiil be the vec-

tor of coefficients from a,,, to a But, as M is in Rational Canoni-

itn+1’

cal Form, the characteristic polynomial of M is

So the largest eigenvalue of M is the inverse of the smallest root of
q(s). It suffices to show that the vector V does not lie in a subspace
spanned by eigenvectors with smaller eigenvalues. If it did, then we
could factor the smallest root out of both the numerator and denomina-
tor, since we could remove the root in question and still generate the

desired sequence of vectors having integral coefficients.

SOPRERRPI S SV ALY S PR

[PRPSEFREIPR RN
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Chapter |1

W GROUPS GENERATED BY RIGHT-ANGLED POLYHEDRA

Let P be a polyhedron, that is P is a two sphere with a cellular subdi-
vision into faces, edges and vertices. We require P to satisfy certain
combinatorial criteria.

1. Each face of P has at least four edges.

Each vertex of P is contained in exactly three edges.

2
3. Each edge of P is contained in exactly two distinct faces.
4

Each three-cycle of faces has a common vertex.

FICESPRETRN

5. No two faces meet along more than one edge.

A three-cycle of faces is a collection of three faces with the property

that each face has an edge in common with each of the other two.

" h

Three Usde §-9-h .

- 12 -

Bt oo
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Example: Cube

1 Example: Dodecahedron.

P
..j
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Example: Soccer Ball
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Example: Truncated Octahedron

1

A Ur Y

Non-example: Tetrahedron
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Non-example: Connected sum of Two Cubes at a Vertex

g
%
a
3

T R R AN D IR Y PO VST P

R I DIV EATIR ST

This violates condition 4.

f
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Non-example: Connected Sum of Two Cubes along an Edge

i g e gt a3

R LB o3 E

This violates condition 5.
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From now on, we will assume that all polyhedra satisfy the above com-

binatorial conditions.

These combinatorial criteria are designed to include both hyperbolic
and euclidean polyhedra, as well as some hybrids which can exist in
neither geometry as polyhedra with planar faces and right dihedral an-
gles. These hybrids, such as the truncated octahedron, are int?rest-
ing, because they exhibit characteristics of both geometries in their
combinatorics and growth.

If the polyhedron P had a geometric structure, we could talk about

the dihedral angles at the edges. As it is, if we want a group acting

on R3 with fundamental domain P, then we have to specify combinatorial

conditions on the generators of the group to ensure that, in the uni-

versal cover, P acts as if it does indeed have right dihedral angles.
First choose a subset of the faces of P and designate them as infi-
nite. All edges and vertices of an infinite face are also infinite. The

remaining cells are called finite. The group will ignore infinite cells.

e st 5 e A bk e e S e i L £ S T L A DB

, From now on, any cell will be assumed finite unless otherwise specified.
Furthermor{e, we can make the following change in P. [If a finite face
has two or more adjacent infinite edges, then we can replace them with
a single infinite edge. This makes for some strange looking polyhedra,
but it does not affect the combinatorics of the group (to be defined).

Next choose a pairing of the finite faces of P. That is, to every fi-
nite face f of P, assign a (possibly the same) finite face g and an iso-
i morphism

Ps: f->g.

Bitiz ia dvorin s wanotisi s
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We require that

pg: g =+ f and pgopf = id

Furthermore, P¢ must match finite edges and vertices to finite edges
and vertices, as well as infinite to infinite. It may be orientation pre-
serving or reversing.

Now comes the right angle condition. The order of the orbit of any
edge under the p's must be no more than four. The order of the orbit

of a vertex must be no more than eight. At each finite edge, we re-

quire the following picture:

’
I

/ /

F?Q('O:g a.nd(

&Opkophor?g = M on €
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Similarly, at finite vertices, we must have:

ALL FACE PAIRINGS MUST RE CONSISTEANT
W ITH THIs PICTURE.

£
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Example: Let P be any compact hyperbolic polyhedron with right di-
hedral angles and let the face pairings be given by reflection in each
face.
Example: Let P be a regular cube and let opposite faces be identified
by translation.
Example: Let P be the truncated octahedron. Let the squares be in-
finite, and identify the remaining faces in the pattern given below.

This identification yields the complement in 53 of the Whitehead link.
See Thurston [|2] .

Example: Let k be any prime alternating link without trivial twists.

That is, nothing of the form:

- oo 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

B

Now, replace each crossing in the projection with a tiny infinite square.

LY

DRRIND X

This is P. Let the face pairings be given by reflection composed with

o e

a rotation by one edge. The direction of rotation on each face is cho-
sen to mesh with its neighbors. For instance, if k is the Borromean

Rings:

H

:; q
3
]
i
Bl
i
3
i
]
3
3
]
¢
E}
1

i
P

EINRPPRTESIN

SRS SR

[ ST P o
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Exercise: Verify that this pairing is admissible. Note that no vertex

is finite, so it suffices to verify the edge conditions.

See Menasco [7].

fieaid e akdize st
[ —
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‘ We now use the face pairing maps to build the universal cover of our

polyhedron P as if it had right dihedral angles. The consistency condi-

tions on the face pairings guarantee that, combinatorially, this can be
done. Locally, we can build a cell complex with four faces meeting
every finite edge, and six edges meeting every finite vertex. We will
, see that every edge in the cell complex has at first one, then three,

then four polyhedra adjacent to it as we build the universal cover.

PRy XSS Sy

Our goal is to study the group G of deck transformations of the uni-
versal cover of P, and to calculate the growth function of this group.
If we pick one copy of P and identify it with the identity element of G,
then we can identify words in G with copies of P in the universal cov-
er. Here is what happens.

Pick B0 = P to represent the identity element. Each generator Ps
corresponds to a copy of P glued to B0 at the appropriate finite face.
In general, Bi*l is obtained from Bi by gluing copies of P to all finite
faces on the boundary of Bi' If an edge on the boundary of Bi touch-
es one polyhedron, then it will touch three in layer Bi+1' If it touches
three in layer Bi' then the right angle allows only one more to be add-
ed at that edge. These polyhedra correspond to the words in G of
length i*1 as obtained by multiplying each word of length i by each
generator and throwing out cancellations and redundancies. f the Bi
are obtained in this fashion, then it suffices to know the number of po-
lyhedra in each Bi in order to determine the growth function of the

group G.

|
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At the first layer B‘l' new polyhedra are in one to one correspon-
dence with the finite faces on the boundary of BO' This is not always
the case. On the boundary of Bi’ call a finite face an exposed face if
the polyhedron in Bi+'l which attaches to that face touches no other po-
lyhedron in B, (or Bi*‘]) along a face. A finite face is called an edge
face if the polyhedron which glues to it attaches by one other adjacent

face. This is forced when one of the edges of the attaching face al-

1 ready has three polyhedra meeting it.

exposed

A finite face is called a vertex face if the polyhedron which glues to it
attaches by two other faces. The three attaching faces must have a

common vertex. Here are some pictures:

|
4
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vertex

faces

£, h.
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We will see that there are no other types of attaching faces.
Here is another characterization. Let f be a finite face of the
boundary of Bi' If f is disjoint from Bi—'l' then f is an exposed face.

, If f intersects Bi-1 along an edge, but is disjoint from Bi-2’ then f is

an edge face. If f intersects Bi-2 at a vertex, then f is a vertex face.
j As B0 has only exposed faces, we start with those. One important
i property of exposed faces which we must show is that every face adja-
cent to an exposed face is also on the boundary. This is initially true,

and we will see that it is maintained. Suppose that Pe Bi is attached

+1
to an exposed face g of Bi along face f = pg(g). Every face of P ex-
| cept f is on the boundary of Biﬂ' Faces adjacent to f meet Bi along

an edge and are hence edge faces.

% exposed faces

(-]

e al
o edge Saces

%

Since g was an exposed face, the faces adjacent to g were on the
boundary of Bi’ and hence polyhedra in Bi+1 were attached along those

¥ faces. Thus the picture at each edge, e, of g is that of three polyhe-

4
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dra, one from B;, two from B4y, meeting at e. When it is time to glue
in a polyhedron from Bi+2’ it will have to attach to both of the faces on
the boundary of Bi*l which meet at edge e, as we can have only four
polyhedra meeting at an edge. The equivalence of the two caracteriza-
tions of edge faces above follows.

To summarize, if a polyhedron, Pj’ is added along an exposed face,
f, then f is the only face of Pj which is not on the new boundary, fi-
, nite faces of Pj not touching f are exposed faces, and finite faces of Pj

adjacent to f are edge faces. Two edge faces on Pj intersect iff they

have a finite vertex in common with f. In particular, each edge face

; can touch no more than two other edge faces of Pj'

; Now suppose that P in Bi+1 is glued to Bi along a pair f and g of
: faces with common edge e. First suppose that e has no finite vertices.
This implies that no finite face of P adjoins both f and g. For a finite
face of P which adjoins f or g, then, the local picture is that of an

edge face. For a finite face of P not adjoining f or g, the local picture

is again that of an exposed face.

X, Y,2, w infinite

Reproduced Wit.h permission of the copyright owner. Further reproduction prohibited without permission.



28

If the edge e of a pair of edge faces does have a finite vertex, then
there is a finite face h of P which adjoins both f and g. What happens
to a cell in B.,o which is attached to h? Consider: we have a finite
vertex v. Therefore, three finite edges of B,_y meet at v. In B,
these are edges of edge faces, and to each pair of edge faces, there is
the third face in Bi+1

glue to all three of these faces, since we must have eight polyhedra

adjacent to both. The copy of P in Bi+2 must

and six edges meeting at a vertex.

*
i
! (o]
(v) o
X
"
o o
° o
e (o]
o
*
\ﬁ o 7|
l"l ,’, /‘ / I "‘ .',
e o ‘
(o] // ! i\
%_9*
o vertex Soces. o
o

£

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




29

We call these faces vertex faces.

We summarize: If P is attached along a pair of edge faces, then fi-
nite faces which are disjoint from the attaching faces are exposed faces.
Finite faces which touch only one attaching face are themselves edge
faces. And, if the common edge e has any finite vertices, we will have
vertex faces which adjoin both edge faces. In the event that there are
two vertex faces on P, they must be disjoint. If they intersected, they

would have to meet along an edge. But look:

s
\/,

The two 3-cycles of faces h-f-k and h-g-k must both have common ver-
tices, and these must be the endpoints of the edge of intersection be-
tween h and k. But since f and k meet along an edge, the common
vertex of h-f-k must be at the other end of that edge. A similar pic-
ture holds for the other three pairs. We conclude that the edge of in-
tersection of f and h must intersect the edge common to f and k. This

makes f a triangle, contradicting the criteria for P.
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What happens when we attach a copy of P to a triple of vertex
faces? Again, we get three cases. Finite faces disjoint from the at-
taching faces are exposed faces. Finite faces which adjoin one of the
attaching faces are edge faces. Finite faces which adjoin two of the at-

taching faces are vertex faces. There are no other cases. Why can't a

face touch all three attaching faces? Consider this picture:

If a face k adjoined f, g, and h, then each of the 3-cycles f-g-k, f-h-

k and g-h-k would have a common vertex. In each case, the vertex

would have to be the other endpoints of the edges meeting at v. But
since k can meet f g and h at only one edge each, we conclude that f,

g, h, and k form a tetrahedron.

H e e 3 e b e et 50 KTt R A L R

Now we make an important observation. The number and types of
exposed, edge and vertex faces which appear when a copy of P is at-
tached to Bi depends only on the attaching faces and not on i. Be-
cause of this, we can count the number of polyhedra in each layer re-

cursively.
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Label each finite face of P f1""fn' Label each finite edge

€1rc- s Label each finite vertex Vireeeo V) To each polyhedron,

s

3 H - ol o~ L |t sarmm PR S P N A - : o -
5 labe! it accordi 1g O how it was attached t ne previocus Iaye- , €.9.,
P!

label it f3 if it was attached to an exposed face along f3, label it es if

it was attached along two edge faces which intersect along e..

A DODECAHEOROA LAREUED ¥

g
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Each new layer of polyhedra determines a vector in the n*k+*l dimen-
sional vector space spanned by the f's, e's, and v's.

There is a matrix M which relates the vectors of succeeding layers.

If Wi is the vector corresponding to the ith layer, then

W, = (MW,

The coefficients of M are either 0, 1, 1/2, 1/3, or 2/3.

We want to know how many polyhedra in layer i*1 will be attached
only along face f. This is the same as knowing how many exposed
faces pf(f) lie on the boundary of layer i. Consider a polyhedron Pj in
layer i. It was attached along some set of faces. If the face pf(f) is
disjoint from the set of attaching faces, then it will be an exposed face
in the next layer. Therefore, in the column corresponding to Pj and in

the row corresponding to f, there will be a 1 in the matrix M.

f(5)
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Consider an edge e, with adjacent faces f and g. There are two

% faces pf(f) and pg(g) with distinguished edges pf(e) and pg(e). If a
fé polyhedron Pj is attached along a set s of faces, then it contributes a
; 1/2 to the row of e if pf(f) intersects the set s only along the edge
3 pf(e), or the same for pg(g). Actually, if both faces intersect s prop-
% erly, then Pj contributes a full 1 to the row of e.
ConTRIBVTES 1, Ac GorH CONTRIBUTES /o

Pls) anvn P (9) ARE Pg(3) INTERSECTS

PROPELLY PLACED. ALONE 2 EO6ES |
- d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

In the case of a vertex v, look at the adjoining faces f g and h.
There are three faces with distinguished verticies given by
(ps(£), Pe(V)) (pg(g),pg(v)), and (p, (h),p,(Vv)). P contributes 1/3
to the row of v for each ;af these three faces which intersects the at-
taching set of faces along two edges meeting at the distinguished ver-
tex.

Here are some examples:

The dodecahedron: By symametry
we ‘maj grovP a“ exposed, Qdae,
and vertex types. The matrix

1s +h

(s en 6 4 3
% 2 Y2
077/34-
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2.1 THE MAIN THEOREM

Let P be a polyhedron with face pairings as in the last section. Sup-

pose that
] n = #(finite faces of P),
. e = #(finite edges of P),
v = #(finite vertices of P),

X, = (Euler characteristic of the infinite cells),

i so that
; (n-e*v+*x_ ) = 2,
3

then the group corresponding to P with face pairings has generating

i function:
(1+5)3
2 3
1+ (3-n)s * (x_-n*v*1)s™ *+ (x_-1)s
Note: The formula is independent of the choice of face pairings. It

depends only on the choice of finite cells. The proof proceeds by find-
ing eigenvectors for the matrix M. Writing the initial conditions of one
copy of P as a linear combination of the eigenvectors will provide

enough information to verify the main assertion.

;

-4 -
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2.2 THE TECHNICAL LEMMA
Let P be given as above. We make some definitions. Let f be a fi-

nite face of P and let e be an edge of P. Then we define:

the number of finite edges of f .

S¢ = the number of infinite edges of f .

vf = the number of finite vertices of f.
vg = the number of finite vertices of e.

2.2.1 Lemma
If X is a root of X3+(3-n)A%+(x_*v*1-n)X*(x_-1)=0, then M has an eigen-
vector V with eigenvalue X . In particular, the eigenvector V has coef-

ficients:
A2+(2-sF )a-(1-7)
f f
for the face f,

A-v_+1

oM

for the edge e, and

for a vertex.

Example: The Truncated Octahedron with Infinite Squares. For each
hexagon, s:,: = 3,and s°f° = 3. Each edge is infinite and there are no

finite vertices, so since n = 8, v = 0 and X, = 6, V has coefficients:
A2-1-2 face
\*1  edge
1 vertex .

Where )\ is a root of 33-5)2-)+5=0.
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Example: Dodecahedron

O
;
[}

:
2
e
f

sf =5, s: =0, n=12, x" =0, and all edges are finite, so V =

S

¢
St

A%2-3x+1 face
X-1 edge
1 vertex
; Where X is a root of A3-9X2+9)-1=0

We wish to show that MV = \V. We first show this for the face coef-

PRRTSCRRREN 8 At

] ficients Vf.
2.2.2 The Face Coefficient
MV for the face f is
? F -
‘ (MV) ¢ = A3+(2-s )N+ (15,
i
) or, using the defining equation for 1,
(MV)f = (n—sf-]))\2+(n~xm—s:-v)k+(1-xw).

How many polyhedra will be attached in the next layer along f? The
answer is the number of polyhedra which were attached along sets of
faces disjoint from pf(f) = g. Remember, f and g are isomorphic, in
particular, they have the same numbers of finite and infinite edges and
vertices.

é
4 :
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Since the numbers of each type of cell is given by the vector V, we

may compute:

Co%
Let g be the union of all finite faces touching g. Then we have

MV) = ST a2+ Q@-spar(-sp) + T O-vied) ¢+ T
h¢g" e¢q” veg

ha face ean edse_ Vo vertex

Call these the face edge and vertex sums.
The face sum: The sum over all faces not adjoining g can be writ-

ten as the sum over all finite faces of P minus the sum over the faces

in g*. Call these sums A and B.

sum A = ni2+2nX-2eix*n- % s:
h

Now we need a formula relating sg and s;. It is

This is because at most one infinite edge appears between two finite

edges.

S NV R
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A /
: /
; e
. st
B¢
"
s *_
: §=%
F
X v. =
l' 9 %
i @

e‘&

INEINTE

So the last term in sum A is equal to 2e-3v.

= ¢ Fuiyyz 4 o F, Foay. F, -
sum B (sg IBRY 2(sg TIn + (sg*'l) »E;’shx sh)

. * * F
Notice that #(f ) = #(g ) = s¢ * 1

o Now look at 57 s;:)‘ .
3 he%’

1
i
|
i
;
!
i

']
s
i
£
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%
That counts each edge of g which contains a vertex of g twice, and

every other edge once.

e
i
4
e

3*
SO
F * F F o
S;,A = e\ ts )+ A-s X
] k‘zg" h g g (sg Sg )
k]

-~

* *
Where eg is the number of finite edges in g . The last term comes

from the number of finite vertices of f.

Similarly,

REREE &1t it iz v oo e
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*
The sum over h in g of v: counts each vertex of g three times, each

R T PTeT T AU T

vertex on the other end of an edge meeting g twice, (let v; represent

the number of such vertices), and every other finite vertex once.

So sum B =

F * . * % -+ F
+1 )\2 + 2_ +g A+ 1- +2 + +
(sg*1) (2-egts I+ (T-e g 2vgtvgrvg)

* *
Where vg is the number of finite vertices in g .

Now for the Edge sum. It, too, can be broken up into two sums:

ZovEn - Xowba
e Ceq*

[ A NS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

Call these sums C and D. Sum C is equal to

E e\ * (e-3v)

Sum D is equal to

e R

e;x*e - Ze.F

*
g L. J
e,es“

3 *
In the second term sum, each vertex in g gets counted twice except

for the vertices in g and the vertices at the other ends of edges which

touch g, which get counted three times.

PR AT TRV 2

So sum D =

(e + (e -2vi-v -vh)
eg eg VngVg

:
3

i
3
i
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Now for the Vertex sum. Adding it up, we get:

So the grand total (after simplification) is:

(n—sg-1))‘2 + (2n-e—2-s°g°)1 + (n-e*v-1)

; But since

n-e*v*x“=2,

and

we have the desired result for faces.

2.2.3 The Edge Coefficient

We want

- - F
(MV)e = XVe = 2%+ ('I-ve)X

L
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Every polyhedron which contributes to a pair of edge faces has a

half share in the polyhedron in the next layer which is attached to that
pair. So it is simpler to compute twice the coefficient of (MV)e.

We need some definitions. Let

*
e

the pair of faces adjoining e,

-

e

the set of edges touching e.

Let f and g be the two faces which adjoin e. Then there are faces
h and k such that whenever a polyhedron, P, in Bi is attached along h

or k, there will be a polyhedron, Q, in Bi*] attached along both f and

LR PPN

g, that is, along the edge e. The faces h and k are the faces adjacent

i to the two faces pf(f) and pg(g) along the edges Pf(e) and pg(e).

In fact, it is only important that the set of attaching faces of P contain

h or k in such a way that the edges pf(e) and pg(e) intersect no other

attaching face.

!
i
i

£ :
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So 2(MV) =

R
7
7

P

St (28D ¢ (1-s])
* + e“

M

Here again, we have face edge and vertex sums. The face sum

equals:

202 + 4% + 2 - (sf+s;)x - (s7+s3)

The edge sum can be calculated by first summing over each face of

*
e and then subtracting the excess and redundancies.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




PENING IS

B L

|

46

We get:

(sf*s;)()\ﬂ) - 20s§*s7)

+ (s:*s;) - (e *1)(Z*1) + v; + 3v£.

And the vertex sum vyields:

F,_F w, =y v _F
(sf sg) - (sf sg) Ve = Ve-

But since #(e) = I*ng, we have the desired result when all terms

are summed.
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3 2.2.4 The Vertex Coefficient

, The case for a vertex is quite simple. A face, f, on the boundary

| of Bi is part of a vertex shaped receptacle iff its polyhedron was at-
tached along a set of faces with two adjacent edges in common with f.
Thus no polyhedron attached along an exposed face can contribute a
vertex. Let f, g, and h be the three faces meeting at a vertex v. To
f, for example, there are two adjacent faces k and | such that P must
be attached along k and | for f to be part of this vertex set of attach-

ing faces. The faces k and | are the two faces which adjoin pf(f)

along the vertex pf(v).

‘/V
SYMBO L LCALLY, \
C\
v
1
+
<
N
0
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There are thus three edges each of which will contribute 1/3 to a

new v, and any finite vertices on any of these edges other than the

ones which correspond to v will also contribute 1/3 to a new v. It is

2‘

an easy exercise to see that the total contribution will be )\, which is

exactly what we want.

s et i e = aned A St e - Al G

ki :
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2.3 THE PROOF OF THE MAIN THEOREM

When we start with our initial polyhedron, P, the vector representing

that state has face coefficients of 1, and all other coefficients 0. Call
this vector W1. The number of polyhedra in the first layer is just the
inner product of W] with the vector whose coefficients are all 1. At

any layer, we can compute the number of polyhedra by computing:

a, = <M”'1w1,(1,1,...,1)>

/ Suppose that there were some linear relation among the a;, such as:

+b

n?k ¥ Pno1@ker T oo Y bgRkapner =0

which held for all k > N. If we took the polynomial

q(s) = bo + bls + b252 + + b_s"
and the power series
(s)=a+as*a52+ +asi+
0 1 2 i

and took their product, we would get a polynomial:

4 )
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+
P(s) =pg* pPys * pzs2 TR pN,,nsN n

Thus we could write:

O (s) = p(s)/qls)

Let A1, X2, and X3 be the roots of the cubic in the Technical Lemma
and let V1, V2, and V3 be the asociated eigenvectors. We may easily

verify, if the eigenvalues are distinct, that:

It follows that the denominator of zj (s) is as claimed, for the Wi must
satisfy the linear relation defined by the polynomial for the )‘j'

it is a simple, but tedious, exercise to compute the numerator, p(s),
given the denominator. We know that its degree must be < 4.

It is more of a problem to deal with the case that the eigenvalues
are not distinct. [If two of the eigenvalues are distinct, say k1 # >‘2 =

X3, then we can observe that:

L
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(xrxz)wz =V - v2 +(x]-x2)x2w1

B
it
‘o

k
it
i
4
?
g
3

w4

From which it follows that if

ARG

R

N = W] - V1/(X1-X2),

then

=
by
k1
:‘?]
&
5
i
%
B
%
ed

(MN) = )‘ZN - V2/()‘1-)‘2)

LSRRI BRI

ST

So W1 is still in the eigenspace of the two eigenvectors.

AT

: If all three roots coincide, then the only possible case is the cube,
for which the theorem holds. |If the root \ were bigger than 1, then
consider:

x_ = 1-2*, and n = 3*3), but then v = (x*1)® (work out the coeffi-
cient for the ) term). Now the probiem is that v < 2n-4 (equality
holds if no faces are infinite). So the only possibilty is X =1, n = 6,
v=12, x_ =0, and the cube is the only admissible polyhedron satisfy-

ing these conditions.

h
i

|
2
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2.4 THE GROWTH OF ALTERNATING LINK COMPLEMENTS

Let k be an alternating link in 53, that is, k is a link in 53 together

; with a projection to S2 such that k alternates between over and under
: crossings.

(O CO)OK
SRLEETS

Furthermore, suppose that k is prime in the strong sense that there is

no 2-sphere which intersects k in two places and which separates cross-
ings, and that k has no trivial twists ( In the cyclic ordering of cross-

ings obtained by following k, no crossing is hit twice in succession.)
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A BAD UNKNOT

If we now replace the crossings in the projection with tiny infinite

squares, we will have an admissible decomposition of the sphere 52 into

faces, edges and vertices.

2.4.1 Theorem
The polyhedron so defined will satisfy the combinatorial properties
above.

Proof: Conditions 1 - 3 may be verified by inspection. For condi-

tion 4, consider: We must show that every 3-cycle of faces has a com-
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mon vertex. First, we see that every 3-cycle of faces contains exactly
one infinite face. If not, then, back in the 3-sphere, there will be a

sphere which crosses the link k in 3 places.

THIS CAN'T
HAPPEN .

Now, if the cycle passes through one infinite edge, then it passes
through two. |If the two infinte edges share a vertex, then the 3-cycle

contains that vertex.

. 3 ($ag)n (§ak) # ¢
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The only remaining case is that the cycle passes through opposite sides
of the tiny infinite square. Now the two finite faces involved must in-
tersect along an edge. This is clearly impossible, for one can color the

finite faces of P like a checkerboard, and faces accross corners are the

same color, but faces which share an edge are opposite colors.

-~ Iv // . . .. - GL4 /
/ %u.c,\c , / X / 15.
1/ \/\ / / / / 5L4(.g / d:: : EN
/ / /o / /
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Condition 5 is also clear. The infinite faces are disjoint. If a finite
face were to meet an infinite face along two edges, they would have to
be opposite edges (coloring again). But then the finite face would meet

both of the other two finite faces at that infinte square in two edges.

s i s RS e S R

‘9 BoTH PoSSIBILITIES
/"\o--m ARE TERRIGLE,
: ) |
© h ) 3 ! k k HAs 2 EOGES

.,\/4 (5a) was risee

THAN | EDGE |

This case is now impossible, for the 2-cycle of finite faces gives rise
upstairs to 2-sphere which meets the link in exactly 2 places and which
separates crossings.

The face pairings for such a polyhedron were given in an exercise
above, but they do not give the link complement. The link complement

is made up by two mirror copies of P which are identified in the pre-
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scribed manner. See Menasco [#]. If we think of the 2-sphere in 53
which defines the crossings of k, then we can see the two polyhedra,
one inside and one outside. |If we pick a point inside one as a base
point, then we can generate the fundamental group of the link comple-
ment by taking paths from the base point into the other polyhedron and
back again. In the universal cover, this corresponds to passing ac-
cross a face of P into the next layer, and then on to the second. Gen-
erators of the fundamental group correspond to polyhedra in the second
layer. If we choose the polyhedron with the base point to be positively
oriented, then words in the fundamental group are in 1-1 correspon-

dance with the positively oriented copies of P in the universal cover.

SAMPLE
CROSSECTION .
GRENERATORS

SHAOED .
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Note that the relations at edges are exactly what one would expect from

e i i i b A

an alternating link.
i Since the growth sequence for the fundamental group of the link
complement is given by the even numbered terms of the growth function

of the group generated by P, we conclude that the growth function de-

pends only on the number of crossings of k, that is

2.4.2 Theorem

With k given as above, we have the growth function of the complement

of k as

1+ 3(n-2)s + (n-3)s2
(1-s) (1- (n-3)2s)

Where n = 2 + the number of crossings of k .

This amazing fact was discovered by Jim Cannon one sunny day in
May, 1980. | was hooked.

Proof: If we left in the crossings as vertices with four edges meet-

ing at them, then we would have

2e = 4v

So

n = 2 + #(crossings of k)
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For a P of this special form, we have a growth function of

(1"5)2
(1-s)(1-(n-3)s)

other term in this power series.
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So the assertion follows by taking the generating function for every



Chapter 1
SOLV GEOMETRY AND TORUS BUNDLES

Solv geometry is the geometry on R:3 whose isometries are the solvable

Lie group of dimension 3. This group has a nice affine representation

as follows:

is the unique isometry taking the origin to the point

(x,y.,z).

The left invariant metric of Solv geometry is determined by the ortho-

normal co-frame:

- 60 -
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To get a feeling for Solv geometry, we compute its curvatures and geo-

desics.

3.1 CURVATURE
Our first observation is that the (x,z) and (y,z) planes, and any planas
parallel to them, are hyperbolic. For example, in the (x,z) plane, let

w = eZ. Then

dw = w dz, so 61 = dx/w , and 63 = dw/w.

which is the metric of the upper half plane. So the sectional curva-
tures parallel to the (x,z) and (y,z) planes is -1.

We can get the sectional curvature of the (x,y) plane by a trick.
l The x and y axes are horocycles in their respective hyperbolic planes,
but with opposite curvature. It is an easy exercise to see that these
are the directions of principal curvature for the (x,y) plane. Since an
R+*R abelian group of isometries acts on the (x,y) plane, we conclude

that its intrinsic curvature is 0. But the extrinsic curvature is -1, so

the sectional curvature of the (x,y) plane must be *1, since for curva-
tures:
Intrinsic = Extrinsic * Sectional

for a2ny surface in a Riemannian 3-manifold. See Spivak [1l], volume

3.
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The structure forms and curvature forms are as follows.
‘ de' = - wipg] Pa
wJA so wJ
{ 0 0o -
0 o0 o2
, o 62 o
i i,k i
dw. = wlz\wj + Q. so S'lj =
0 one2  -p'Ag3
62Ae] 0 WY
830’ XN 0

So we were right about the sectional curvatures.

3.2 GEODESICS

Consider the tangent vectors to a geodesic. With respect to the fixed
frame dual to the orthonormal co-frame, these tangent vectors evolve
with time. Since all isometries preserve both the frame and the geodes-
ics, we know that this evolution depends only on the coordinates of the
tangent vector and not on its location in space. This implies that there
is a flow on the unit sphere which defines the evolution of the tangent
vector to a geodesic. This can be computed for a tangent vector given

its coordinates with respect to the fixed frame.
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To compute this vector field, consider: Parallel translation along a
geodesic preserves the tangent vector field, but not necessarily an ar-
bitrary vector field. Consider a vector field which is constant with re-

spect to the fixed frame. The infinitesmal change as we parallel trans-

late this vector field along the geodesic is precisely the covariant
derivative of the vector field in the direction tangent to the geodesic.
In particular, if we start with the constant vector field whose value at
a point is tangent to the geodesic, we find that the parallel translate of
this fixed vector field varies as its covariant derivative with respect to
itself. We thus conclude that, back in the coordinates of the fixed

frame, the auto-parallel vector field tangent to the geodesic is evolving

as the negative of the covariant derivative of the constant vector field
in that direction with respect to itself. To rephrase, there are two
vector fields which are both tangent to a given geodesic at a given
point. One is constant with respect to the fixed frame, the other is
auto-parallel. Parallel translation fixes one and varies the other by its
covariant derivative. So in the coordinates in which the non-parallel
field is constant, the other varies by the negative of that covariant de-
rivative.

Let us introduce some notation. Let

X = (x1,x2,x3)
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be the fixed coordinate system on the tangent space. Then if X is a

“ constant vector field, and

Y1) = (y;(8),y,(8),y,(t)

is the tangent field to a geodesic with
Y(0) = X
Then

Y'(0) = -v, X

X

If we compute this vector field using the structure forms for Solvy we

get:

This looks like :
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Seen from above, the flow lines are arcs of hyperbolas.

%2,

ﬂ‘
¥
WV
v
 —— > > > X,
N
Vs 3

Note that the (x,z) and (y,z) planes really are totally geodesic, and
that their geodesics behave like hyperbolic lines (a pleasant confirma-
tion). The disturbing fact about this picture is that it indicates that
any geodesic not parallel to the (x,z) or (y,z) planes spirals about the

lines whose tangent vectors are

(1/2)¥2.4Z, 0)
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To see that this is believable, look again at the geodesics in the two

3

hvperbolic planes. In RY, they look like:
AR
22 im(F)
x= = A=
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2= g (= 9=")

2z = L)

So there is a piecewise geodesic with small exterior angles which looks

like this:
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On the unit tangent sphere, this path looks like this:

so it closely approximates the orbits close to it.

Now look at the length and travel of this spiral. Take the geodesic
in the (x,z) plane which passes horizontally through the point (0,h).
By taking exp(vertical scale) and looking in the upper half plane, we
see that the distance along this geodesic between the points where it

hits the x axis is

1,.d

2cosh™ '(e”).

This is a nice exercise.
Now, back at the piecewise geodesic. One turn of the spiral, assum-
ing height d, takes less than 4d+4 time units, but it reaches the point

in the plane
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&3ed V3ed y( 1-729)

(Solve for the points where the geodesic above hits the x axis.) But

the line

( x=y , z=0)

is also a geodesic. Look at the fixed points on the unit sphere, or

look at the isometry
Xy , ZH-Z,

Along this "straight" geodesic, the distance is Zﬁed( ‘I-e-Zd ).
Let's get actual expressions for the spiral time and length of travel.
Look at the projection of our vector field into the (x1,x2) plane. The

flow lines are parameterized by

(aet, ae ).

Unfortunately, the tangent vectors to these curves are not the same
length as the vectors which we wish to integrate. To calculate the
period of a spiral, then, we must integrate the ratio of length of the

tangent vectors to (aet,ae-t) over the length of our vector field V. We
have:
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Let 9, be the geodesic whose tangent vector at the origin is

(a, a ,‘J‘I-Za2 )

Then the length, L(a), of one complete spiral of 9, is

\ 3
4 dt
J1 - 2a%cosh(2t)
: (o]

Where to is the value of t for which the flow line hits the unit circle,

or:

e(2t0) + e-(2t0) =1

Letting a approach its limiting value of «2/2) is interesting, for that
yields the lower bound for spiral time, as well as indicating the behav-

iour of geodesics close to the (x1=x2, x3=0) lines. The answer is:

w7

This can be seen by tedious limiting calculations, or by a trick. Go
back up to the sphere and project a neighborhood of the fixed point

onto the tangent plane to the sphere at that point. In coordinates
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w = (x1~x2)/\/5, X3

ST IS T

The vector field approximates,

( -x3, 2w)

which is integrated by

( acos(V2t) , afZsin(¥2t) )

so a period of 7 is indicated.
How about the actual shape of the spiral? Well, for large spirals we
have a pretty good idea. Let's be exact. With a and tO as before, the

z travel of a geodesic starting at t=0 and going to t=’c1 is

3(t) dt

| f2@
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Since the integrand evaluates to 1, we have that z is just piecewise

linear in t.

Now remember that in R3 there is a distortion of e® in the x direc-

tion when we go up by z, so the x travel of a geodesic is

t
! Xq (t)ez(t) dt

A ’ 1'32(82t*e-2t)

which is equal to

geZt dt
/ '\/1-a2(92t*e_2t)

Assuming that the geodesic at time t=0 is starting at the steepest part
of its spiral (that indicated in a!l of the pictures), then by symmetry,
the distance, D(a), along the line x=y, z=0 from the origin to the point

of first return of the geodesic 9, is:
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(-]

Zﬁ\a(eZt*e-Zt) dt
J1-a2(e2tee 2ty

o t

We can show that the spiral lies on a Euclidean cylinder as follows:

The w coordinate above develops like

} a(e 2t_ Zt) dt

r" fzzt-zt

So, as z=t, we have a geodesic on the cylinder:

w2 + cosh(2z) = (1/2a2)

If we have a geodesic whose tangent vector at the origin is not
pointing in the x = y direction, then we can let it evolve until it does
(assuming, of course, that it is not in the (x,z) or (y,z) planes).

The geodesic will now be at some point (a,b,h). Its evolution from this
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point onwards will be a translate of the geodesic at the origin with the

same tangent vector. That is, it will spiral about the line:

2h

(x-a) = e (y-b), z = h.

Tc see some of these numbers, here is a computer generated table of
some choice spirals, where 0 is the angle between the tangent vector

and the (x1,x2) plane.

a 8 L D D/cosh(L/4)
0.70786 0.00763 4.4428 4.45788 0.93653
0.70622 0.05007 4.4468 4.54415 0.95385
0.70194 0.12092 4.4672 4.69377 0.98125
0.68265 0.26374 4.5608 5.0230 1.03035
0.64864 0.40951 4.7320 5.4136 1.07211
0.59889 0.56053 5.0120 5.9094 1.10355
0.53134 0.72057 5.4404 6.5987 1.12346
0.44125 0.89690 6.1280 7.7187 1.12680
0.31517 1.10881 7.4200 10.206 1.10168
0.22342 1.24932 8.7760 13.743 1.06994
0.10000 1.42890 11.985 28.991 1.02318
0.07071 1.47063 13.368 40.5675 1.01323
0.03162 1.52606 16.584 89.7632 1.00436
0.01000 1.55663 21.192 282.955 1.00069
0.003126 1.56632 25.796 894.402 1.00057
0.00100 1.56938 30.402 2828.14 1.00030
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0.

0
0
0
0.
0
0

70.
223.
707.

maximum w and z coordinates:

00763

.05011
.12151
.27003

43404

.62770
.87808
.25217
.00835
.00277
.00023
.94995
.33831

7036
6045
1060

z

max

0.00539
0.03542
0.08581
0.18979
0.30229
0.43043
0.58666
0.79798
1.14862
1.49744
2.30256
2.64915
3.45387
4.60517
5.75646
6.90775

Note that these approach constant multiples of D and L.

73%

The shapes of the cylinders for these geodesics are given by their
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The computer numbers suggest that the spirals always get where
they are going faster than the straight geodesic. We have seen that
this is the case for large spirals. We can use the curvature forms for
Solv geometry to calculate the Jacobi fields along the straight geodesic.
They indicate that the point (w,7,0) is a conjugate point of the origin.
You can see this geometrically on the unit tangent sphere. If the Ja-
cobi field takes the straight geodesic to a nearby geodesic, then the
difference of their tangent vectors is the derivative of the Jacobi field.
But the tangent vector to the straight geodesic is constant, so the de-
rivative of the Jacobi field points from the tangent vector (\/_2‘,5,0) to
the orbit of the tangent vectors of the nearby geodesic. The integral
of this new vector field is zero precisely when the nearby geodesic has

made one full orbit, or, in the limit, after a time of m{2.
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Let 8 be the angle that a tangent vector in the X1%% plane makes
with the (x1,x2) plane. Consider the geodesic 9 which passes
through the origin with this tangent vector. Let L(8) be the arc
length of one full spiral turn of Jg- Let D(8) be the distance from the
origin to the point ge(L(e)) along the x=y, z=0 geodesic. Then the

computer calculations suggest that:

3.2.1 Lemma

L(8) increases monotonically with 6,and
D(8) > L(8) for 8 > 0.

Note: for large D and L, we know that D approximates Z\C'Z'el'/4.

We verify this as follows: The vector field is difficult to deal with
in its present form, so we make a change of coordinates which wraps
the sphere twice around the z axis. The actual transformation is given
by projecting to the (x1,x2) plane, squaring, in the complex sense,

and projecting back orthogonally to the sphere. This change of coordi-

nates sends every orbit of V to a circle.
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In the (u,v,w) coordinate svstem, the vector field looks like:

(0, 2WwN , -2vN )

Where N equals

(1/wn/(u2+v2)(1 Y2y
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Since the diameter of an orbit through (u,v,w) is 4 1-u2 we can cor-
rect for the size of each orbit to obtain the angular velocity of V. We

obtain:

V| 4N

ang

Now consider any great circle through the fixed point (1,0,0) which is
not the equator. On this circle, v=cw, so the angular velocity is sim-
ply a function of w. As w increases, so does the parameter 8, so if
the derivative of the angular velocity with respect to w is negative for
all ¢ 0, then the orbits with larger 8 take longer to complete. The de-

rivative of the square of the angular velocity is just

4/w2) (w22 (1-w?) - 2)

which, thank Gauss, is negative for w > 0. (It even vanishes to the

right order.) The assertion follows.

Now consider a geodesic 9g and a nearby geodesic 9g' with 8' > 6.
Since L(8') is greater than L(8), we know that at the time L(8), the
larger spiral has not yet completed one full turn. Therefore, the pic-

ture at the point of first return is.
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That is, gev(L(e')) is further from the origin than ge(L(B)). From this
picture, we conclude that the derivative of D with respect to L is
sec(8), which is always greater than 1, for 6>0. Since D(0) = L(0) = g},
we conclude that D > L, as desired. In fact, as 8 is always increas-

ing with L, we conclude that the second derivative of D with respect to

L is always positive, except at 0, where it vanishes. This has the fol-

lowing implication:

3.2.2 Theorem

Let (p,p,0) be a point on the line x=y, z=0, with p > 7 2. Then
the shortest path from the origin to (p,p,0) is the spiral 9 with D(8)=
ﬁp. There are other geodesics from the origin to (p,p,0), but they
are all longer in length. In particular, suppose that for some integer

k, p/k > n, but p/(k*1) € n. Then there are 8., 1<i<k such that

>0
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such that
D(ei) = D(81)/i

and the distances from (0,0,0) to (p,p,0) along the associated geodes-

ics 9./ that is, iL(Bi), increases with i, and kL(Bk) is less than ¢ 2p.
i

So there are k*1 different lengths of geodesics from (0,0,0) to (p,p.,0),

and the geodesics are unique up to isometry (99 is a translate of 9-9')

3.3 GEODESICS IN TORUS BUNDLES

In this section we will discuss the closed geodesics in the free homotopy
classes of torus bundles over circles with Anosov monodromy. Such
manifolds have universal covers modelled on Solv geometry. Threre are
many different Solv geometric structures on a given torus bundle, de-
termined by choosing the modulus and the area of the torus. Given a
choice of a structure on the torus bundle, we will see that for a given
free homotopy class, there is always a shortest closed geodesic, and
there is also often a unique longest closed geodesic. In fact, there are
often several, but always a finite number of distinct lengths of closed

geodesics representing a given free homotopy class.

3.3.1 The Solv Geometry Structure on Torus Bundles
Let M be a manifold obtained by taking the product of a torus with a
closed interval and identifying the two boundary components by a ho-

meomorphism. As homeomorphisms of the torus to itself are defined up
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to isotopy by elements of SLZZ, we may associate to the manifold the
matrix which defines its monodromy. |If the matrix Y has real distinct
eigenvalues, then we say that Y is hyperbolic, and that the homeomorp-

hism induced by Y is Anosov.

3.3.2 Theorem
Let M be a torus bundle with Anosov monodromy. Then n](M) acts on
Solv Geometry as a discrete cocompact group of isometries.

Proof: See Scott [I0]. Since Y is hyperbolic, it has two distinct ei-
genvectors with real distinct eigenvalues. 1r1(M) has a normal Z*+Z sub-
group corresponding to 'rr](torus). Choose a representation of this
subgroup on Isom(Solv) in such a way that the eigenvectors are taken
to translation along the x and y axes. That is, there is a lattice, L,
in the plane which is the image of the integer lattice under a linear map
which takes the two eigendirections to the x and y axes. Generators
for the Z*Z subgroup are represented as generators for the lattice L.
This choice determines the structure uniquely. The remaining genera-
tor of the group, which corresponds to the circle direction, is repre-
sented as an isometry which takes the origin straight up a height
log(X). It is left to the reader to convince herself that this completes
the proof. Note: a vertical translation by Log()\) expands by a factor
of X in the x direction and compresses by a factor of X in the y direc-

tion, which is exactly what ¥ should do.
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We are now ready to find the closed geodesics. Let w be a word
representing an element of ™ (M). There are two cases.
Case 1: w sends the origin to the point (a,b,h), h#0.
Case 2: w sends the origin to the point (a,b,0).

We will first look at Case 1.

3.3.3 Proposition
If w sends the origin to (a,b,h), h#?0, then there is a unique closed
geodesic representing the class of w. Furthermore, the geodesic is the

quotient of a vertical line in Solv geometry.

Proof: w acts on the space of vertical lines by the affine transforma-

tion

Where we identify a vertical line by its first two coordinates. This has

a unique fixed line which we can solve for as

(a/(1-eM , b/1-eM) )

Since h#0.
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To see that no other geodesic can represent w, remember that not
only must w take one point on the geodesic to another one, but it must
also take the tangent vector to the geodesic at the first point to the
tangent vector at the second. Examination of the vector field V on the
unit tangent sphere reveals that the only geodesics which point in the
same directions at different heights are the vertical geodesics. Since
only one vertical line is fixed by w, we conclude that it represents the
unique geodesic in the class of w.

We now turn to Case 2. Let w be an element of Z+Z, that is, w is
represented as a horizontal translation. The action of w is to take the
origin to some point (a,b,0)

Look at all of the images of the line z=0, x=y under transformations
which take the origin to a point on the z-axis. The line through the

point (0,0,h) is given by

Call these lines the straight horizontal geodesics.
Since Y is hyperbolic, we conclude that no eigenvector of ¥ has ra-
tional slope. Thus, no image of the origin by a non-trivial element of

Z*Z lies on the x or y axes. Therefore, if

h = (1/2)Log(a/b),

then the line
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z=h, x=(a/b)y,

is preserved by the action of w. We have thus found one geodesic in

the free homotopy class of w. The length of this geodesic is

+/ 2ab

which is important, for it tells us exactly how many different lengths of
closed geodesics lie in the same free homotopy class. The geodesic
which we have found, denote by 9p- If the length of 9 is greater
than w 2 then there exists a spiral geodesic which completes exactly one
full turn between the point (0,0,h) and (a,b,h). Call this geodesic
91- We saw in the last section that there are a number of different
length geodesic arcs connecting (0,0,0) with (p,p,0) if p is sufficiently
large. By a vertical shift of h, we get a collection of different length
geodesic arcs completeing integral numbers of spirals between (0,0,h)
and (a,b,h). These represent the different length closed geodesics in
the free homotopy class of w.

To see that these are the only geodesics in the free homotopy class
of w, consider: If the action of w preserves the tangent vector of the
geodesic, then the geodesic must make an integral number of complete
turns between points which are identified by the action of w. If points
p and q have a full turn of geodesic arc between them, then there are
points p' and q' on this geodesic with a full turn between them such

that they also lie on a straight geodesic.
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Since we have found the only straight horizontal geodesic fixed by w,
it follows that the only closed geodesics in the class of w are those
which spiral at height h.

We have found the number of different lengths of geodesics in the
class of w, but the geodesics themselves are not so unique. -~ Any hori-

zontal translate of any geodesic in the class of w will also represent w.
That is, for 9o there is an S1 of translates of 99 which are all longest

geodesics representing w. For all shorter geodesics, there is a
T2=S]xS1 of translates of each. The total picture is this: The space
of longest geodesics representing w is an incompressible torus (the
(x,y) plane / Z*Z) foliated by translates of 9p- Ak out each translate
of 9 is a family of concentric compressible tori, each foliated by trans-

lates of closed geodesics of the shorter lengths. Or, if you want, you

can find families of incompressible tori (not the (x,y) plane, but isotop-
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ic to it) which are foliated by the closed geodesic of your choice. The

pictures are beautiful.
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Chapter IV
THE GROWTH OF TORUS BUNDLES

We wish to study the growth functions of the fundamental groups of to-
rus bundles over a circle. We start by choosing ge.nerators for the fi-
ber a and b, which commute, and a generator t for the circle direction.
Before we compute the growth function with these generators, let us

look at the limiting case as the monodromy becomes unbounded.

4.1 THE LIMITING CASE
What is the smallest group which has every torus bundle group as a
quotient? A first try might be (Z*Z)*Z. A growth matrix for this

group is given by:

1 0 4
1T 1 0
2 2 1

Where the columns correspond to exposed types, edge types, and free
types. The exact definitions are left as an exercise. In any case, you

may verify that the growth function is:

- 86 -
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(1 +s)2

1 - 4s - s2

Of course, one can use the formulas for free products of groups to ar-
rive at the same answer, but this is more fun. This has a growth rate
of 2 ¢+ J?;, which is too large. Computer studies indicate a maximum of
around 3 1/3. There are, however, a few relations which we can add.

1

For any finite monodromy ¥, the words tat ' and tbt--I are words in a

and b, that is, they commute with a and b. If we require this in the

limit as well, we get the super-group G*~ with generators a, b, and t,

such that a and b commute, and both a and b commute with the words

'ca‘t-1 and tbt_1. Any torus bundle is a quotient of this group. Fur-

thermore, one can see that the growth functions for torus bundles con-
verge in the weak sense to the growth function for the super-group as

the coefficients of ¥ become unbounded.

1

Here is the important point. The word tat ' in the super group

commutes with a and b, but is not equal to any word in a and b.

Thus the group generated by a b and tat—1 is free abelian of rank

three.

Let us look at the words in G~ which, when abelianized, have no t's

in them. We study the group by studying the cosets of this sub-

group.
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4.2 TYPES IN A PLANE
We are looking at words in the group by looking first at words in co-
sets of the subgroup, H, of words whose abelian.izations contain no t's.
For torus bundies, this subgroup is Z*Z. For the super group, it is
Z”. In either case, we can separate the words in a given coset of this
subgroup into types which depend on how the word got there in the
first place.
Let w be a word in a coset L of Z*Z. Consider the coset wZ of the
subgroup generated by t. This coset intersects H at some element Wiq-

We call wl the type of w.

=z
w
t”l
{
pa
wZl
Ja
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It is much easier to talk about elements of a coset as if they were

group elements. This naming allows us to do just that. Now for

types, we can set

- -1

In a torus bundle group, T(w1) is still an element of Z*Z. In the
super-group, it represents a new object in H which still comutes with a
and b. We still call this a type, the type of T(w1). We can form

higher order types by taking:

Tn(a) = tMat ™",

Let us do layer h, that is, the coset of Z*Z which contains the word

th. Note that words in layer h are in 1-1 correspondence with types.

At time h, only the type of the identity shows up (the word th). At
time h+*1, we get all the words ath, tath_1, tzath_z,..., tha, and the
corresponding a-1, b, and b~! versions. These are the types a, T(a),

Tz(a),..., Th(a), and similar names for the others, where

-1

Tia™h = -Tia)
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At time h+*2, the types which appear are the sums of any two types of

words which appeared at time h*1. That is, T(a) *T(b), T2(a)-T3(a),

2T5(a), etc. Note that types commute. At time h+*3, we get the ex-

pected sums of three types from time h+1, but we also get some new

types. These correspond to words like t—1ath+1 and thﬂat-]. These,

and their a-1, b and b-‘I counterparts, are the types T-1(a), and
Thq(a) etc. Now while it is true that , at time h*4, we will get types

like T(a)*Thﬂ(a) and T4(b)-T-1(a), we will not get types like

h+1 4 h-4ta—'l -1 1, ,.h+2 1

T 1@+t ). bt t™1 is length h+4, but t 'bt""2 bt™! has

length h+6. The moral is, types TO through Th will start generating

sums like generators for an abelian group of rank h+1l from the very

1 h+1

start, even with the new types like T ' and T , but not ali new

types will combine as readily. The rule is:

4.2.1 Lemma

Let w = .Z'n.TJ(D) , where o is a wild card, i.e., a or b. Then
32t

w appears at time h plus

h
an,ifk=i=0,

tr0

Sn +2i+1,ifk=0,i>0,
s N

h+k

Z_'.'n|+2k+1,ifi=o,k>o,
{50
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heh
2n 2k *2 +2,ifi>0, k>0.
I2-¢

The factors of 2 and the extra 1 or 2 come from overshooting the layer

h and turning round.

1 ‘th ‘\-i, . —-—\—L
th

W i
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Proof: Note that there are never more than two sign changes of the

exponent of t in any word which has minimal length for the group ele-

2_.-5_ .24 -1.-2

ment which it represents. That is, the word t“at “ba“t b~

2 1b-]t-4ba2t2 of length 14 because

1% of

length 18 is equal to the word t“at”
‘l:_4b32t4 commutes with b-1. In general, if there are more than two
sign changes, the word can be shortened by commuting the bumps

around.

5

cAP"F"'L*ﬂop

The formulas then follow from inspection.

We are now in a position to calculate the growth function for the su-
per group G~. At layer h (the coset Lh = ch), first consider words

whose types are of the form

S
J
Z an (o), nk#O.

'J:O

for some fixed k. By the above formulas, we can see that the number

of such types grows as those words in a free abelian group of rank
2k*2 which do not beiong to the subgroup generated by the first 2k

generators. So if
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¢(s) = (1+s)/(1-s),

then the growth function for types of order k is:

2k+2 2k

ék(S) = (¢ (s) - ¢77(s))

Now, at layer h, we have 2h*2 generators at time h. Then at time

h+*3 we add 2 more (we are only counting types T', i 2 0). At every

other time unit, we add two generators, so we sum:

sh 2h+2 h+ +4

¢ (s) *+s 2§h*1(s) + sh B ,0(s) + ...

* sh+2n¢h*n(s) t

The exponents of s are due to the fact that when $(s) was computed,
the constant term was lost, so the extra power of s is absorbed in the
coefficient.

This sum equals:

sh(1-)33(1+9)

(1-2s-2s5-s4)

Now we look at types Tj(a), Tj(b), j < 0. Any word in layer h has

a non-negative part and a negative part. Let w = some word in layer

+ -
h. Then w is some sum of types. We can writew =w * w where

the sum of the types in w with Tj(m), j20

£
n

the sum of types in w with Tj(D), j < 0.

b3
"
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Now the time of occurrence of w is equal to the sum of the times of

occurance of w and w . Therefore, the delay between the occurrences
of w+ and w depends only on w . Therefore, the generating function
for the full group is the product of the generating function for the w'
with ( 1 *+ the generating function for the w .) At any positive layer,
the w 's appear first at time h+*3, with two generators, and then two

more are added every other time. Thus the formula for the w at level
h is

2n

sh+2{§0(s) . 52§1(s) coeste () v L)

Which equals:

4sh+3

1-25-2s"-s

So the full generating function for level h is

2
(1-5)3(1+s) (1*3 2h+2

1—sl

(1-2s-253-s%)
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By symmetry, level h and level -h have the same generating function,

so summing over layers yields:

(1+5)4(1-5)4(1-5+3s2+5)

(1-25-253-sH2(1-35-52-5°)

Note: The factor in the denominator with the smallest root is

1—3$-sz~53.

This comes from the last summing step. In each new layer, we get two
new generators with each time unit, that is, at layer h we have 2h+*2
generators to start, but at layer h*1, only one unit later, we have
2h+4. Within each layer, we get new generators every two time units,

and that accounts for the larger roots of the other denominator factor.

4.3
THE SIMPLIFICATION

Every torus bundle group has a subgroup of finite index which is much
simpler for our purposes. Let G be the fundamental group of a torus
bundle over a circle with generators a, b, and t as above. For every
non-trivial element x in Z+Z, there is a sublattice of finite index gener-

ated by x and T(x). The matrix Y acts on this sublattice by
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i Trace(¥)

Now our calculations are much simpler. This corresponds to looking at
the growth function of the fundamental group of a finite cover of our
original torus bundle. The advantage of this simplification is that only
one half as many new types appear at any one time. In fact, as T{(a) =

b, and T(b) = T2(a), we need never talk about b's at all. There is a

super group for torus bundles of this type which has a smaller growth

rate than the super group G~. It is generated by a, b, and t, with

relations

1:

{a,b,t | [a,b]=id, tat '=b, [a,tbt ']=id, [b,tbt 1]=id.}

Its growth function is calculated in a similar manner to G°. The an-

swer is

(1+s)*(1-5)2(1+52)

(1-s-52-53)2(1~2$-52)
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Now we do an actual torus bundle. Let us do the case Trace(Y) =
4, as this will generalize to all even traces. As before, we will look
first at words in a given layer with only positive types.

Definition: The age of a word at time s is the difference (s - the
time at which that element first appeared.) The objects of study will
be the appearance of new words between two older words, both of
which are of comparable age and tvpe, for instance, 3T4(a) and T5(a)
are always of the same age, and are nearly of the same type. As time
passes, the space between these two words fills with their progeny.

EXTREMELY IMPORTANT POINT : The offspring of two parent

words always stay between them.

For instance, The offspring of T4(a) which threaten most to get
away are 2T4(a), 3T4(a), etc. T4(a) is so much bigger than T3(a),
that the T3(a)'s do not threaten to invalidate the extremely important
point. But look, the first one to get beyond T5(a) is 4T4(a). This,

however, is equal to T5(a) + T3(a), since

T"(a) - Trace(‘i’)Tm](a) + Tn-z(a) =0

So the space between them is the whole battlefield.
Fix a layer h in which we will work. We will have to understand the
development of words in three different situations. The cases are when

the parent points are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

1. Tk(a) at age 2 and Tkﬂ(a) at age O
2. Tk(a) at age 0 and qu(a) at age 0
3. Tk(a) at age 1 and 2Tk(a) at age 0.

Let Ak(s), Bk(s), and Ck(s) be the generating functions for the num-
ber of words formed between the parent points in each of the above

situations, that is,
Ak(s) = Ak,O + Ak,1s + Ak,ZS + ..

and Ak,O =1, Bk,O = 2, and Ck,O = 1.

We get a lot of recursion,
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=3}

04et
W
2T
Ch 3
Tk age >
age © o, ¢S

TIME 5, So*’"

A(s) = C(s) *+ sC () * 2(B, _,(s) - 1)
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_r\u-\ aae O

Bk(s) = 2Ck(s) + sBk_.l(s)
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Nage o

3
\ age 3
2
a’%e L W
09420 -~ 641 St

TAME- 6o
C(s) = € _1(s) * 25, _,(s) *+ s?B, ,(s)

From this, we conclude that

C,(s) = Ck_1(s) + 35Ck_1(s) - ka_z(s)

To sum up layer h, we start at time h with the identity. At time

h+1, we get the h types a, T(a), T2(a),..., Th(a). The words be-

tween each of these are given by the functions Bk(s). In particular,
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i
Z (B,(s)-1)

et

After that, at time h+*3, we get 'Thq(a). Th(a) is age 2, so the
points in between them were growing as Ah(s) since time h*1. At time

h+5, the type Th+2(a) appears, and so we have the words between

Thq(a), age 2, and Th+2(a), age 0, which means we had an Ah*](s)

starting at time h+*3. At times h+2n+1, we will get a new Ah*n(s)'

Therefore, the growth of positive types in layer h is given by

W=t ©0 .
P+ s )1+ X sP"TA L ()
st n=i

The words of negative type are computed in a similar manner, follow-
ing the same reasoning as for the super-group G~. The growth of a
layer really is the product of the growths of the types T'(@), i > 0,

and the types T(a), j 0.
The growth for layer h is then given by:

et i @
P Z e+ 2 A L0 Z 2™ ()
ey ! Az \ n m=i m
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By tedious manipulations of the recursions among A, B, and C, we
can show that the growth function in question is rational with denomina-

tor:

2 2

(1 -s - 3s° + 53)(1 - s° - 353 - 55)2(1 - s)4

The reason for this is that upon multiplying by (1-5)4, the expression

for the growth function involves only terms of the form

0 LA
z s'Ci(s), and Z sz'Ci(s).
1=

=l

The recursion among the C's gives the above denominators as the de-
nominators of rational functions for these two sums.
For other even traces, the recursions among the A's, B's, and C's

are similar. We have:

- +Dg+ 2+ + k-2+ k-1 - k-1
C.(s) = (1%2s%2s%+.. . +2s 3s7 )C _4(s) -5 Cn-2(s)

Where k = (1/2)Trace(Y).

The denominator of the growth function will be:

(1-5-252-253-. .. -ZSk-1 -35k+sk+1)(1-52-253- . -ZSk-Bsk+1-sk+3)2(1 -s)4
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For odd trace, the recursion among the A's, B's, and C's is differ-
ent, but it can be done. It will have to wait untill next time.

It is interesting at this point to take the limits as the traces get
large. We see that the denominators of the growth functions converge

to the denominator of the growth function for the simplified super-

group.
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Chapter V
SL(2,R) AND SEIFERT FIBRE SPACES

Another of the 3-manifold geometries is called SL2. It is modelled on
the universal cover of the group SLZR. This can also be thought of as

the universal cover of the unit tangent bundle of the hyperbolic plane.

2 2

It is by the projection p:T1H + H™ that the isometries of SL2 are un-

derstood. The isometries of H2 lift to a normal codimension 1 subgroup

of lsom(SLz). Every non-trivial Seifert fibred space whose base orbi-
fold has negative Euler characteristic can be modeled on this geometry.
SL2 has the following properties: The subgroup of isometries which fix

a given point also fixes a line through that point. The resulting folia-

tion of SL2 by lines has a transverse hyperbolic metric. The 2-plane
distribution orthogonal to this foliation is not integrable. For more in-

formation on SL,, refer to Scott[l0].

5.1 ISOMETRIES OF SL,,

The group SL2R acts on SLi without fixed points by a lifting of its
action on the hyperbolic plane. The full group Isom(SLz) is a normal
extension of SL2R by R. The R corresponds to a 1-parameter sub-

group of isometries of SL2 which do not arise as lifts of motions of the

hyperbolic plane. Think of the unit tangent bundle to the hyperbolic

- 105 -
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plane. There are two kinds of isometries which are easy to see.
There are isometries of the hyperbolic plane, which lift to isometries of
the unit tangent bundle, and there are isometries which leave fixed the
plane but which rotate each tangent vector through a constant angle.
Neither of these tw;) types of isometries have fixed points, but there is
a combination which does. Consider an elliptic hyperbolic isometry
which rotates about a point p by an angle 8. Now, fix the plane and
rotate each tangent vector through the angle -8. The compositicn iso-
metry fixes the set of tangent vectors at p , but has no other fixed
points.

Note: What is really happening is that we are choosing a 2-plane dis-
tribution of the frame bundle of the plane so that the plane may have
constant negative curvature.

We can now define a metric which is preserved by the above group
of isometries. It is made possible by the local non-integrability of the
distribution orthogonal to the fixed lines of isometries. To find the
distance between two points in SL2, look at their representations as
unit tangent vectors to the hyperbolic plane. Their distance is the
length of the shortest path in H? between their base: points with the
property that parallel translation along that path will take one vector to
the next. It is easy to see that such a path is always a circular arc

whose area is the difference in the angles of the two vectors.
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This metric is equivalent to the degenerate Riemannian metric obtained
by preserving the hyperbolic metric on the horizontal directions while
letting the vertical distances increase to infinity. That is, the only
paths which have a hope of being finite in length must stay tangent to
the horizontal distribution. In general, given a path in SL2 orthogonal
“to the foliation of fixed lines, its length is exactly the length of its
projection to the hyperbolic plane. Conversely, given a path in H2, it

has a unique horizontal lift to SL2. if the path is a C! closed loop in

2

H®, then the endpoints of the lifted path will lie on the same vertical

line. Since the curvature of H2 is -1, the two endpoints will differ by

a rotation of -(Area enclosed by the loop downstairs). if the loop is
piecewise C!, then it lifts to a union of paths with vertical breaks cor-

responding to the exterior angles at the corners.
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5.2 AN IRRATIONAL SUBGROUP
We will look at the fundamental group of a 3-manifold modelled on
SL2. A good candidate is the Euler class 1 circle bundle over the sur-
face of genus 2 . (This is the double cover of the unit tangent bundle

to the surface.) The fibration

S'-> M-~ S2
induces
0+ m(S1) » m (M) + 7,(S,) ~ 0.
The last projection we call p . The fundamental group of M is generat-

ed by five elements and their inverses. Four elements project down to
the generators for the fundamental group of the surface, and the re-

maining one generates the kernel of the projection. The group is
{a,b,c,d,t| [a,b]l[c,d]=t , [a,t]=id. , [b,t]=id. etc.}

There is an obvious representation of this group on the isometries of
SL2. a, b, cand dlift as do all hyperbolic isometries. The element
t corresponds to a vertical translation by the area of a surface of gen-
us 2, that is, 4.

Now, note that we do not need to include t in our list of generators

for the group G. We can instead define the fundamental group as
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{a,b,c,d| [[a,b],[c,d]]=id., and other appropriate permutations}

Now we ask the question: what is the generating function for the
growth of elements in Z which is the kernel of the projection p , given
that we take only a, b, ¢ and d as generators? The answer is an irra-
= tional function.

To determine the occurances of group elements in ker(p) it suffices
to look at the graph T of the fundamental group for the surface of gen-
us 2. Every path in the graph starting at the identity corresponds to
an element of G. Two paths correspond to the same element of G iff
they enclose zero signed area. An element of ker(p) corresponds to a
closed path through the identity.' The length of time that it takes an
element k of Z to be counted by the growth function is equal to the
minimum perimeter of a collection of k octagons in the graph I'. To an-
swer the question of the relation of perimeter to area for a collection of

octagons, we introduce the Fundamental Spiral of the graph T.

5.2.1 The Fundamental Spiral

Definition: The fundamental spiral ! is defined inductively. Start at
any point in T and connect it to one of its neighbors. Now the rule is:
always add the right most edge. The only condition is that you never

complete a loop.
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5.2.2 Theorem
The fundamental spiral is a maximal tree for the graph T with the prop-
erty that any closed path obtained by adding a complementary branch
has the minimum perimeter for its area. Furthermore, every area ap-
pears in this way.

Proof by induction: Consider k octagons in the plane. Assuming
the obvious choice of a simply connected arrangement for minimum per-

imeter, we have by the Gauss-Bonnet theorem,

Area = Sum of the Exterior Angles - 2.

We can count the vertices on the perimeter two different ways: one

with multiplicity, the other without. Let an be the number of vertic-
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es on the perimeter counted with multiplicity. Let VP be the number of
vertices on the perimeter counted without multiplicity. Notice that VP
is equal to the number of edges on the perimeter. Let V' be the num-

ber of vertices in the interior, and let V:n be the number of vertices

in the interior counted with multiplicity. We now have the following

formulas:
Area = 41k = VP - (‘n/4)VrF:1 - 27
|

P - Ry
Vm 8k Vrn

or,since

P - _ eyl
Vm 8k - 8v
therefore, we have:
Area = VP + 20V - 21(k+2)

Therefore, to minimize the perimeter, or maximize the area, we must

maximize the number of interior wvertices, V'. Geometrically, this is
completely resonable.
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In order to study the vertices in the interior of the graph, we intro-

duce the dual reduction.

5.2.3 The Dual Reduction of an Octagon Packing
Suppose that we have k octagons arranged so that their union is a

disk. The k octagons form a planar graph ¥ in T. The dual reduction

* * *
¥ is a subgraph of the dual graph T of I. ¥ has one point for each

*
octagon of ¥. Two points in ¥ are connected by an edge iff their

* *
preimages in ¥ have an edge in common. Inside ¥ is a subgraph KO

consisting of those vertices and edges which are parts of complete octa-

. *
gons in ¥ .

5.2.4 Lemma

*
Let ¥ be an optimal arrangement of k octagons. Then k>7 implies ¥ -

*
XO consists of six or less vertices.
Proof: Eight octagons must be arranged with a common vertex to be

*
optimal. (Obvious, or Excercise) Thus if ¥ has eight vertices, then

* % * %
4 =XO Now suppose that ¥ -XO contains seven or more vertices. Each

vertex corresponds to an octagon in ¥ which has no vertex in the in-
terior. Thus, if these octagons are removed and rearranged, another

interior vertex can be added to ¥, contradicting the optimality of ¥.
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* %
Notice that we have no control over ¥ ¥ Any rearrangement of

* %
the octagons in ¥ corresponding to ¥ -XO will also be optimal. This is

because none of the octagons in T have any interior vertices,and there

are not enough of them to create any new interior vertices. Let LA, be

*
the set of octagons corresponding to - Then per(¥) = per‘(KO)‘

* %
6% (¥ -KO). We thus conciude:

¥ optimal & XO optimal.

*

We need just two more steps. First, we wish to show that KO opti-

mal implies 3’0 optimal. Second, we need that if ¥ represents a cycle
*

from the Fundamental Spiral, then ¥ does as well. This, together

with the fact that for all k, there exists an edge in the complement of
the Fundamental Spiral such that the cycle it defines has area k, will

prove the main assertion.
Step 1: ¥, optimal imal
tep 1: XO optimal = 2(0 optimal.

*
if KO is optimal, then it has the greatest number of interior vertices

for its area and the greatest area for its number of vertices. This fol-
lows from the formula above. But the number of octagons in XS is
equal to the number of interior vertices in KO. And the number of ver-
tices of 3’; is equal to the number of octagons of XO. Therefore, XO

has the greatest number of interior vertices for a fixed number of octa-

gons, hence it is optimal.
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*
Step 2: ¥ from the Fundamental Spiral 3’0 from the Fundamental

Spiral.
| leave this as an excersise. Look carefully at the graph of the

Fundamental Spiral.
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To complete the proof of irrationality, we need

5.2.5 Lemma
Let {ai} be a sequence of integers with rational generating function
with the property that a; < ci for some constant ¢. Then there exists

integers M and k, and rational numbers Pqoeees Py such that

M = 3 T ke, 0 <P <MLL

in particular, if the a, are an increasing sequence, then the rj are all
equal, and the limiting slope ai/i is rational.

Proof: Consider the denominator, q(s), for the generating function
for the a;. Since the a, are integers, the roots of q(s) must be the
inverses of algebraic integers. The linear growth condition on the a,
imply that q(s) has no roots inside the unit circle. Therfore, all of
the roots of q(s) lie on the unit circle. But an algebraic integer all of
whose conjugates lie on the unit circle must be a root of unity. See
Borevich and Shafarevich[2 ], pg. 89. Let M be the least common mul-

tiple of the orders of the roots of q(s). Then the lemma follows by in-

duction on the number of roots of q(s). Let ¢ satisfy Z;M = 1. Then let

q'(s) = (s-z)q(s).
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Let {bi} be the coefficients of p(s)/q'(s). Then

= + 2 4 i
bj =3 T 38 T a8t T T gt

So we have

bi*kM = bi"(k-1)M + a term which depends only on i

+ a constant times K.

The last term must be zero if we are to have linear growth. The lemma
follows.

Now, if we set

a; = the number of octagons which can be arranged to have perime-

ter less than or equal to i,

then, for the a, to be given by a rational generating function, the limit
of ai/i would have to be a rational number. This is the limit of the ra-
tio of area to perimeter for optimal octagon packings. But we can cal-
culate the area and perimeter of large loops in the Fundamental Spiral,
and we will see that the ratio of area to perimeter is not rational in the
fimit.

Look at the following layers in the fundamental spiral.
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The two kinds of behaviour on the boundary of each layer are an octa-
gon with six edges on the boundary, and an octagon with five edges on

the boundary. Call these type 6 and type 5 octagons respectively.

The recursion between layers gives a matrix

29 24
6 5

The initial condition vector is 40 of type 6 and 8 of type 5. In the lim-

it, this converges projectively to the eigenvector

;:.
1

1
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Where ) is a root of

A2 - 34X+ 1 =0.

Now the perimeter at a given lrv=i is 6 times the number of type 6 oc-

tagons plus 5 times the number of type five octagons in that layer.

The area enclosed by a layer approximates )\ times the number of octa-

gons in that layer.

Perimete - approaches 62" (1-5) * 527 (6)

Area approaches AT(A-5) + 2(6)

So we see that the ratio of area to perimeter is

¥ (x+1)/6)

which is not rational.
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