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These notes are taken from Chapters 17 and 18 of my book Mostly Sur-

faces . I omitted some of the material so that what is here is more focused
on the points I bring up in the lecture.

1 Flat Cone Surfaces

1.1 Sectors and Euclidean Cones

A sector inR
2 is the closure of one of the 2 components ofR2−ρ1−ρ2, where

ρ1 and ρ2 are two distinct rays emanating from the origin. For example, the
nonnegative quadrant is a sector. The angle of the sector is defined as the
angle between ρ1 and ρ2 as measured from inside the sector. For instance,
the angle of the nonnegative quadrant is π/2.

Two sectors in R
2 can be glued together isometrically along one of their

edges. A Euclidean cone is a space obtained by gluing together, in a cyclic
pattern, a finite number of sectors. The angle of the Euclidean cone is the
sum of the angles of the sectors. The cone point is the equivalence class
of the origin(s) under the gluing. The cone point is the only point which
potentially does not have a neighborhood locally isometric to R

2.
Note that two isometric Euclidean cones might have different descrip-

tions. For instance, R2 can be broken into 4 quadrants or 8 sectors of angle
π/4.

Exercise 1. Prove that two Euclidean cones are isometric if and only if
they have the same angle.

Exercise 2. Define the unit circle in a Euclidean cone to be the set of
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points which are 1 unit away from the cone point. On the cone of angle 4π
find the shortest path between every pair of points on the unit circle. This
problem breaks down into finitely many cases, depending on where the points
are located.

Exercise 3. Let C be a Euclidean cone, with cone point x. Say that a
vector field on C−x is parallel if an isometry carrying any open set of C−x
into R

2 carries the vector field to a constant vector field. Prove that C − x
has a parallel vector field in a neighborhood of x if and only if the cone angle
of C is a multiple of 2π. (Hint : Unroll C into the plane and watch the vector
field as you go once around the cone point.)

1.2 Translation Surfaces

Say that a compact oriented surface Σ is a Euclidean cone surface if it has
the following two properties:

• Every point p ∈ Σ has a neighborhood which is isometric to a neigh-
borhood of the cone point in a Euclidean cone of angle θ(p).

• We have θ(p) = 2π for all but finitely many points.

The points p, where θ(p) 6= 2π, are called the cone points . The quantity

δ(p) = 2π − θ(p)

is called the angle deficit . So, there are only finitely many points with nonzero
angle deficit, and these deficits could be positive or negative.

Exercise 4. Prove that every Euclidean cone surface has a triangulation.

A translation surface is a Euclidean cone surface which admits a parallel
vector field which is defined everywhere except at the cone points. By Exer-
cise 3 above, the cone angles of a translation surface are all integer multiples
of 2π. At first it might seem that a Euclidean surface whose cone angles
are all integer multiples of 2π must admit a parallel vector field, but this is
not so. As Rick Kenyon pointed out to me, M. Troyanov constructed some
counter examples. See “Les surfaces euclidienne a singularites coniques”, by
M. Troyanov, published in Enseign. Math (2) 32 (1986), 76-94. You might
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like to try to find some examples yourself without looking up Troyanov’s
article.

Recall that a gluing diagram for a surface is a list of finitely many poly-
gons, together with a recipe for gluing together the sides of the polygon in
pairs.

Lemma 1.1 Suppose that S is a flat cone surface obtained from a gluing

diagram in which the two sides in each glued pair are parallel. Then S is a

translation surface.

Proof: Once we show that S is orientable, we will know that S is a cone
surface. On each polygon, we consider the standard pair of vector fields V1

and V2. Here Vj consists of vectors parallel to the basis vector ej. Given the
nature of the gluing maps, the vector fields piece together across the edges
to give parallel vector fields V1 and V2 defined on the complement of finitely
many points.

We first show that S is orientable. If S is not orientable, then S contains
a Möbius band M . By shrinking M if necessary, we can arrange that M lies
entirely in the region where both V1 and V2 are defined. But then we can
define a continuous pair of linearly independent vector fields on a Möbius
band. This is easily seen to be impossible. Hence S is oriented.

It now follows from definition that S is a translation surface. ♠

In light of Lemma 1.1, the surface obtained by gluing (with translations)
the opposite sides of a regular 2n-gon is a translation surface.

Translation Principle. Whenever we consider gluing diagrams for trans-
lation surfaces, in which more than one polygon is involved, we always think
of the polygons in the plane as being pairwise disjoint. How the polygons sit
in the plane is really not so important, in the following sense. Suppose that
P1, . . . , Pn are the polygons involved in a gluing diagram for some surface.
Suppose that Q1, . . . , Qn are new polygons, such that Qk is a translation of
Pk for all k, and the pattern of gluing for the Q’s is the same as the pattern of
gluing for the P s. Then the two resulting surfaces are canonically isometric.
The canonical isometry is obtained by piecing together the translations that
carry each Pk to Qk. We mention this rather obvious principle because it
guarantees that certain constructions, which seem based on arbitrary choices,
are actually well defined independent of these choices.
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1.3 Billiards and Translation Surfaces

Let P be a Euclidean polygon. A billiard path in P is the motion taken
by an infinitesimal frictionless ball as it rolls around inside P , bouncing off
the walls according to the laws of inelastic collisions: the angle of incidence
equals the angle of reflection; see Figure 17.1 below. We make a convention
that a path stops if it lands precisely at a vertex. (The infinitesimal ball falls
into the infinitesimal pocket.)

The billiard path is periodic if it eventually repeats itself. Geometrically,
a periodic billiard path corresponds to a polygonal path Q with the following
properties:

• Q ⊂ P (that is, the solid planar region).

• The vertices of Q are contained in the interiors of the edges of P .

• Q obeys the angle of incidence rule discussed above.

Figure 17.1. Polygonal billiards

Exercise 5. Find (with proof) all the examples of periodic billiard paths in
a square which do not have self-intersubsections. So, the path Q has to be
embedded.

The polygon P is called rational if all its angles are rational multiples of
π. For instance, the equilateral triangle is a rational polygon. In this section
I will explain how to associate a translation surface to a rational polygon.
This is a classical construction, attributed by some people to A. Katok and
A.N. Zemylakov. The geometry of the translation surface encodes many of
the features of billiards in the polygon.
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For each edge e of P there is a reflection Re in the line through the origin
parallel to e. Like all reflections, Re has order 2. That is, Re ◦ Re is the
identity map. Let G be the group generated by the elements R1, . . . , Rn.
Here Rj stands for Rej and e1, . . . , en is the complete list of edges. If ei
and ej are parallel, then Ri = Rj. If P is a rational polygon then, after we
suitably rotate P , there is some N such that ej is parallel to some Nth root
of unity. But then G is a group of order at most 2N . In particular, G is a
finite group. For each g ∈ G, we define a polygon

Pg = g(P ) + Vg. (1)

Here Vg is a vector included so that all the polygons {Pg| g ∈ G} are dis-
joint. Thanks to the Translation Principle, the surface we will produce is
independent of the choices of the translation vectors.

To form a gluing diagram, we declare that every two edges of the form

e1 = g(e) + Vg, e2 = gr(e) + Vgr, r = Re. (2)

are glued together by a translation. Here e is an arbitrary edge of P . Since
gr(e) = g(e), the edges e1 and e2 are parallel. Hence, it makes sense to glue
them by a translation. Note also that (gr)r = g. So, our instructions tell us
to glue e1 to e2 if and only if they tell us to glue e2 to e1. Let ̂P be the space
obtained from the gluing diagram. Since the edges are glued in pairs, ̂P is a
surface. By Lemma 1.1, ̂P is a translation surface.

Here we work out the example where P is an isosceles triangle with small
angles π/8. In this case, the group G has order 16 and our surface will be
made from 16 isometric copies of P .
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Figure 17.2. Gluing diagram for a translation surface
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Figure 17.2 shows the resulting gluing diagram. We have chosen the
translations so that all the long sides have already been glued together. Also,
we have colored the triangles alternately light and dark so as to better show
the pattern. The numbers around the outside of the figure indicate the gluing
pattern for the short edges.

The gluing pattern in Figure 17.2 has an alternate description. Take two
regular Euclidean octagons and glue each side of one to the opposite side
of the other. The smaller inset picture in Figure 17.2 shows one of the two
octagons. The other octagon is splayed open, and made by gluing together
the pieces that are outside the octagon shown.

Let ̂P be the translation surface constructed above. A path γ ∈ ̂P is
called straight if every point p ∈ γ has a neighborhood U with the following
property: Any isometry between U and a subset of R2 maps γ ∩ U to a
straight line segment. (For concreteness we can always take U to be a little
Euclidean ball centered at p.) There is an obvious map π : ̂P → P . We
just forget the group element involved. This forgetting respects the way we
have done the gluing and so π is a well-defined continuous map from ̂P to
P . The map π is somewhat like a covering map, except that it is not locally
a homeomorphism around points on the edges or vertices.

Lemma 1.2 Suppose γ̂ is a straight path on ̂P which does not go through

any vertices of ̂P . Then γ = π(γ̂) is a billiard path on P .

Proof: By construction γ is a polygonal path whose only vertices are con-
tained in the interiors of edges of P . We just have to check the angle incidence
condition at each vertex. You can see why this works by building a physical
model: Take a piece of paper and make a crease in it by folding it in half
(and then unfolding it.) Now draw a straight line on the paper which crosses
the crease. This straight line corresponds to a piece of γ̂ which crosses an
edge. When you fold the paper in half you see the straight line turn back at
the crease and bounce like a billiard path. This folded path corresponds to
γ. ♠

The converse is also true:

Lemma 1.3 Suppose that γ is a billiard path on P . Then there is a straight

path γ̂ on ̂P such that π(γ̂) = γ.
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Proof: We use the fact that the map π is almost a covering map. Think of
γ as a parametrized path γ : R → P , with γ(0) contained in the interior of
P . We define γ̂(0) to be the corresponding interior point of Pg, where g ∈ G
is any initial element of G we like. We can define γ̂(t) until the first value
t1 > 0 such that γ(t1) lies on an edge, say e1, of P . But then we can define γ̂
in a neighborhood of t1 in such a way that γ̂(t1 − s) ∈ Pg and γ̂(t+ s) ∈ Prg

for s > 0 small, where r is reflection over side e1. If you think about the
folding construction described in the previous lemma, you will see that the
straight path γ̂(t1− ǫ, t1+ ǫ) projects to γ(t1− ǫ, t1+ ǫ). Here ǫ is some small
value which depends on the location of γ(t1). We can define γ̂ for t > t1
until we reach the next time t2 such that γ(t2) lies in an edge of P . Then we
repeat the above construction for parameter values in a neighborhood of t2.
And so on. This process continues indefinitely, and defines γ̂ for all t ≥ 0.
Now we go in the other direction and define γ̂ for all t < 0. ♠

Note that γ̂ is a closed loop in ̂P if and only if γ is a periodic billiard
path. Thus, the closed straight loops in ̂P correspond, via π, to periodic
billiard paths in P .

Exercise 6. Suppose that P is the regular 7-gon. What is the Euler char-
acteristic of ̂P? As a much harder problem, can you find a formula for the
Euler characteristic of ̂P as a function of the angles of P?

Exercise 7. The same construction can be made when P has some irra-
tional angles. What do you get if P is a right triangle with the two small
angles irrational multiples of π?

1.4 Affine Automorphisms

Recall that an affine map of R2 is a map of the form x → Ax + B, where
A is a 2 × 2 invertible and orientation-preserving matrix and B is another
vector. If B = 0, then the map is linear. Note that the set of affine maps of
R

2 forms a group under composition.
Suppose that Σ is a translation surface. An affine automorphism of Σ is

a homeomorphism φ : Σ → Σ such that the following hold:

• φ permutes the nontrivial cone points of Σ.
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• Every ordinary point of Σ has a neighborhood in which φ is an affine
map.

The second condition needs a bit more explanation. Let p ∈ Σ be an ordinary
point. This is to say that there is a small disk ∆p about p and an isometry
Ip from ∆p to a small disk in R

2. The same goes for the point q = φ(p). The
map Iq ◦ φ ◦ I−1

p is defined on the open set U = Ip(∆p) ⊂ R
2 and maps it to

another open set Iq(∆q) ⊂ R
2. The second condition says that this map is

the restriction of an affine map to U .
We denote the set of all affine automorphisms of Σ as A(Σ). It is easy to

see that the composition of two affine automorphisms of Σ is again an affine
automorphism. Likewise, the inverse of an affine automorphism of Σ is an
affine automorphism of Σ. In short, A(Σ) is a group.

Exercise 8. This exercise is an important one. Let Σ be the square torus.
You can think of Σ as R

2/Z2. That is, we say that two points of R2 are
equivalent if their difference is an integer vector, and Σ is the space of equiv-
alence classes. Let [p] ∈ Σ denote the equivalence class of p ∈ R

2. Let A be
a 2×2 matrix with integer entries and determinant 1. Let B any vector. Let
φ be the map φ([x]) = [Ax+ B]. Prove that φ is an affine automorphism of
Σ. Thus, the square torus has a huge affine automorphism group.

Exercise 9. Give an example of a translation surface which has no non-
trivial affine automorphisms.

1.5 The Differential Representation

Let SL2(R) denote the group of 2×2 matrices having real entries and deter-
minant 1. Here we explain a canonical representation ρ : A(Σ) → SL2(R).
The basic property of Σ we use is that there are canonical identifications
between any pair of tangent planes Tp(Σ) and Tq(Σ), defined as follows: By
definition of translation surfaces, there exists a parallel vector field on Σ−C,
where C is the set of cone points. Given p, q ∈ Σ−C, we can find an isometry
I from a neighborhood of p to a neighborhood of q such that I(p) = q. If
we insist that I preserves both the orientation and the parallel field, then
I is unique. Moreover, I is independent of the choice of parallel field. The
differential dI isometrically maps Tp(Σ) to Tq(Σ). We set φpq = dI. So, in
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short
φpq : Tp(Σ) → Tq(Σ) (3)

is a canonical isometry. One immediate consequence of our definition is that

φpr = φqr ◦ φpq, φqp = φ−1

pq . (4)

Now, given an element f ∈ A(Σ) we choose and ordinary point p ∈ Σ,
and let q = f(p). Let dfp be the differential of f at p. This means that dfp
is a linear map from Tp(Σ) to Tq(Σ). Note that the composition

M(f, p) = φqp ◦ dfp

is a linear isomorphism from Tp(Σ) to itself. Using the isometry Ip from a
neighborhood of p to a neighborhood of the origin in R

2, we can identify
Tp(Σ) with, say, the tangent plane to R

2 at the origin. We let ρ(f) be
the linear transformation of R

2 which corresponds to M(f, p) under the
identification.

We claim that ρ(f) is independent of the choice of point p. To see this,
we note that the map ρ(f) has the following alternate description. Using the
coordinate charts Ip and Iq discussed above, the map ρ(f) is just the linear
part of

dIq ◦ dfp ◦ dI
−1

p .

The linear part of an affine map does not depend on the point. Hence ρ(f)
has the same definition independent of which point we use inside our local
coordinate chart. But the surface is connected, so ρ(f) does not depend on
the choice of point at all.

The determinant of ρ(f) measures the factor by which f increases area in
a neighborhood of any point. Since the whole surface has finite area and ρ(f)
is an automorphism, ρ(f) must have determinant 1. Hence we can interpret
ρ(f) as an element of SL2(R). The map f → ρ(f) is a homomorphism
because of the chain rule: The linear differential of a composition of maps is
just the composition of the linear differentials of the individual maps. And
composition of linear maps is the same thing as matrix multiplication in
SL2(R).

We have now constructed the representation ρ : A(Σ) → SL2(R). We
let V (Σ) = ρ(A(Σ)). The matrix group V (Σ) is sometimes called the Veech

group.
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1.6 Connection to Hyperbolic Geometry

Recall that H
2 is the hyperbolic plane. We work in the upper half plane

model. Every element of SL2(R) acts on H
2 isometrically. In particular,

the Veech group V acts isometrically on H
2. The group V is said to act

properly discontinuously on H
2 if, for every metric ball B ⊂ H

2, the set

{g ∈ V | g(B) ∩ B 6= ∅}

is a finite set. In other words, all but finitely elements of V have such a
drastic action on H

2 that they move the ball B completely off itself. In this
case, H2/V is a hyperbolic orbifold.

Theorem 1.4 If V is the Veech group of a surface, then V acts properly

discontinuously on H
2.

We first take care of a trivial case of Theorem 1.4.

Exercise 10. Suppose that Σ is a translation surface with no cone points.
Prove that Σ is isometric to a flat torus.

Exercise 11. Prove Theorem 1.4 in the case when the surface has no cone
points.

From now on, we consider the case when Σ has at least one cone point.
In this case, Σ is homeomorphic to a surface having negative Euler charac-
teristic. Let C be the set of cone points of Σ. We call a map γ : [0, 1] → Σ a
saddle connection if the following hold.

• γ(t) ∈ C if and only if t = 0, 1.

• The restriction of γ to (0, 1) is locally a straight line.

Exercise 12. Prove that Σ has a pair of non-parallel saddle connections
that intersect at a point of Σ− C.

Lemma 1.5 Let f be an affine automorphism of Σ. Let γ1 and γ2 be a pair

of saddle connections, as in Exercise 8. Suppose f preserves the endpoints

of γ1 and γ2, and f(γj) = γj for j = 1, 2. Then f is in the kernel of the

differential representation ρ.
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Proof: The restriction of an affine map to a straight line that is mapped to
itself is just a dilation. Hence, the restriction of f to γj is just a dilation. Since
f(γj) = γj, the dilation factor must be one: the total length is preserved. So
f is the identity on γj.

Let p be an intersubsection point of γ1 and γ2. We know that f(p) = p.
Since γ1 and γ2 are nonparallel, we see that dfp fixes two independent direc-
tions at p. Hence dfp is the identity. But then ρ(f) is the identity. ♠

We will assume that the Veech group V = V (Σ) is not properly dis-
continuous and we will derive a contradiction. Suppose that there is some
ball B ⊂ H

2 and an infinite collection {gi} ⊂ V such that gi(B) ∩ B 6= ∅.
Thinking of SL2(R) as a subset of R4 by stringing out the coordinates of
the matrices, we note that the elements in our set {gi} comprise an infinite
bounded subset of R

4. An infinite bounded subset of a Euclidean space
always has an accumulation point. But this means that we can find a se-
quence of compositions of the form gig

−1

j ∈ V which converge to the identity
element.

What this means in terms of Σ is that we can find an infinite sequence
{fj} of affine automorphisms such that ρ(fi) is not the identity but ρ(fi)
converges to the identity as i → ∞. All these elements permute the set of
cone points somehow. So, by taking suitable powers of our elements, we can
assume that each fi fixes each cone point of Σ.

Let γ1 and γ2 be the saddle connections from Exercise 8. The segment
fk(γ1) is another saddle connection that connects the same two cone points
as does γ1. For k large, fk(γ1) and γ1 nearly point in the same direction
and nearly have the same length. If they do not point in exactly the same
direction, they cannot connect the same two endpoints. The two paths start
out at the same cone point but then slowly diverge, so that one of them
misses the cone point at the other end. Figure 18.1 shows what we mean.

Figure 18.1. Nearly parallel paths

This means that fk(γ1) and γ1 point in exactly the same direction for k
large. But then fk(γ1) = γ1. The same argument shows that fk(γ2) = γ2 for
k large. But then, by the previous result, ρ(fk) is the identity for large k.
This contradiction finishes the proof.

11



1.7 Triangle Groups

Figure 18.2. The hyperbolic triangle of interest

Recall that a geodesic hyperbolic triangle is a triangle in H
2 whose sides

are either geodesic segments, geodesic rays, or geodesics. The case of interest
to us is the geodesic triangle with 2 ideal vertices and one other vertex having
interior angle 2π/8. Figure 18.2 shows a picture of the triangle we mean,
drawn in the disk model. This triangle is known as the (4,∞,∞) triangle.

Lemma 1.6 Let γ be any geodesic in H
2. Then there is an order 2 hyper-

bolic isometry which fixes γ.

Proof: Thinking of H2 as the upper half-plane, the map z → −z fixes
the imaginary axis, which is a geodesic. We have already seen that any two
geodesics are isometric to each other. If g is an isometry taking the geodesic
γ1 to the geodesic γ2 and I is an order 2 isometry fixing γ1, then gIg−1 is the
desired order 2 isometry fixing γ2. Thus, we can start with the one reflection
desribed above and construct all the others by conjugation. ♠

The order 2 hyperbolic isometry fixing γ is called a hyperbolic reflection

in γ. Given any geodesic triangle ∆, we can form the group G(∆) ⊂ SL2(R)
as follows. We let I1, I2, I3 be hyperbolic reflections fixing the 3 sides of ∆
and then we let G(∆) be the group generated by words of even length in
I1, I2, I3. For instance, I1I2 and I1I2I1I3 all belong to G but I1I2I3 does not.
All the elements in G are orientation preserving and it turns out that we can
find matrices in SL2(R) for the elements I1I2, I2I3, and I3I1. This is enough
to show that G actually comes from a subgroup of SL2(R).
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1.8 Linear and Hyperbolic Reflections

As preparation for the Veech group example we will work out, we discuss
how to convert between certain linear maps as they act on R

2 and the cor-
responding linear fractional actions on H

2.
We will say that a linear reflection is a linear transformation T : R2 → R

2

such that T (v) = v and T (w) = −w for some basis {v, w} of R
2. The

corresponding hyperbolic isometry acting onH
2 is a hyperbolic reflection. To

make this correspondence explicit, we first consider the matrix representation
of T in the standard basis of R2. Necessarily, the matrix will have a negative
determinant since linear reflections are orientation reversing. Then, given a
linear reflection T and its matrix representative

M =
a b
c d

,

the corresponding hyperbolic isometry is

z →
az̄ + b

cz̄ + d
.

This can be seen by considering the special case when v = (1, 0) and w =
(0, 1) which corresponds to the hyperbolic reflection z 7→ −z̄. All other cases
are conjugate to this one.

The map T is determined by the pair (v, w), but more than one basis
determines T . The basis (C1v, C2w) also determines T , where C1 and C2 are
any 2 nonzero constants. For this reason, it is really the pair (L1, L2) that
determines T , where L1 is the line through v and L2 is the line through w.
The map T fixes L1 pointwise and reverse L2.

The map −T fixes L2 pointwise and reverses L1. For this reason, the
unordered pair {L1, L2} determines the pair of maps {T,−T}. The map
±T corresponds to a hyperbolic reflection, and each hyperbolic reflection
corresponds to a pair ±T of maps. In short, each hyperbolic reflection is
determined by an unordered pair {L1, L2} of lines through the origin. We
call such a pair of lines a cross .

Let us first consider the case when L1 and L2 are perpendicular. In this
case, we call {L1, L2} a plus , because the two lines look like a + symbol,
up to rotation. If we work in the disk model ∆ of the hyperbolic plane, we
can normalize so that the hyperbolic reflections corresponding to pluses all
fix some geodesic through the origin in C. Figure 18.3 shows two examples.
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On the left-hand side of Figure 18.3 we show two pluses, one drawn thickly
and one drawn thinly. On the right hand side of Figure 18.3, we show the
geodesics in ∆ fixed pointwise by the corresponding hyperbolic reflections.

Figure 18.3. Euclidean and hyperbolic reflections

Exercise 12. This is a 3-part exercise. Let ∆ denote the disk model of
the hyperbolic plane. (Actually, the results of the exercise do not depend on
which model is used, but we use the disk model for concreteness.)
(a) Let θ be the smallest angle between the lines of one plus and the lines
of another. Prove that the corresponding geodesics in ∆ meet at an angle of
2θ.
(b) Prove that an orientation preserving linear transformation which point-
wise fixes a line through the origin corresponds to a hyperbolic isometry
which fixes a point on ∂∆ and no point in ∆. Such hyperbolic isometries are
called parabolic.
(c) Prove that the geodesics fixed by a pair of hyperbolic reflections have an
ideal endpoint on ∂∆ in common if and only if the product of the hyperbolic
reflections is parabolic.

In light of Exercise 12, we can draw 3 crosses whose corresponding geodesics
in ∆ are three sides of the (4,∞,∞) triangle shown in Figure 18.2. Two of
the crosses are pluses and one is not. The crosses are drawn thickly, and the
thin lines are present for reference. The thin lines are evenly spaced in the
radial sense.
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Figure 18.4. Three special crosses

To explain why this works, we first identify H
2 with the disk model

∆, as above. Let ±T1, ±T2, and ±T3 be the (pairs of) linear reflections
corresponding to each of the three crosses. Let Rj be the hyperbolic reflection
corresponding to ±Tj . Let γj be the geodesic fixed by Rj. By construction,
γ1 and γ2 are geodesics through the origin in ∆. By Exercise 9a, γ1 and γ2
meet at an angle of 2π/8. Thus, if we suitably rotate ∆, then γ1 and γ2 are
exactly the geodesics through the origin in Figure 18.2.

To finish the argument, we just have to see that γ3 has an ideal endpoint
in common with each of γ1 and γ2. Consider γ1 and γ3. If the signs are cho-
sen appropriately, the element T1T3 pointwise fixes the vertical line through
origin, the line common to the two relevant crosses. By Exercise 9b, the
product R1R3 is parabolic. By Exercise 9c, γ1 and γ3 have a a common ideal
endpoint. The same argument works for R2 and R3.

We have gone through all this trouble because we want to recognize the
(4,∞,∞) triangle group as a subgroup of the group of all affine automor-
phisms of a certain translation surface. We will work this out in the next
subsection.

1.9 Cylinders and Dehn Twists

A flat cylinder (or just cylinder for short) is a surface-with-boundary that is
isometric to a quotient of an infinite strip in R

2 by translation. Cylinders are
not quite translation surfaces, because they have boundaries, but otherwise
they are pretty close. In the next subsection we will see cylinders arising
naturally as subsets of translation surfaces.

Even though a cylinder has a boundary, we can define what it means to
have an affine automorphism of a cylinder. This is a homeomorphism of the
cylinder which is locally affine on the interior. Likewise, we can say that it
means for there to be an affine isomorphism between two different cylinders.
Such a map is a homeomorphism between the two cylinders which is locally
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affine on the interior. There is an affine isomorphism from any one cylinder
to any other.

Two cylinders C1 and C2 are called similar if there is an affine isomor-
phism T : C1 → C2 such that dT is a similarity at each point. Not all cylin-
ders are similar to each other. Informally speaking, you can have a “long
and thin” cylinder and it will not be similar to a “short and fat” cylinder.

A Dehn twist of a cylinder C is a nontrivial affine automorphism T :
C → C which fixes the boundary pointwise. At first glance, it is amazing
that such a map could exist. Here is the prototypical example: Let C be the
quotient of the horizontal strip R× [0, 1] by the equivalence

(x, y) ∼ (x+ n, y), ∀ n ∈ Z.

In other words, C is the quotient of a horizontal strip by integer horizontal
translations. The map

T (x, y) = (x+ y, y)

preserves R × [0, 1] and respects the equivalence relation. So does T−1.
Hence T induces an affine automorphism [T ] of C. Since T fixes the line
R× {0} pointwise, [T ] fixes the bottom boundary component of C. On the
line R× {1} we have T (x, 1) = (x+ 1, 1) ∼ (x, 1). Hence [T ] also pointwise
fixes the top boundary component of C. On the other hand, [T ] obviously
acts in a nontrivial way, because dT is not the identity.

Call two linear transformations T1 and T2 similar if T2 = ST1S
−1 for some

similarity S. Two similar cylinders C1 and C2 admit Dehn twists gj : Cj → Cj

whose differentials dg1 and dg2 are similar. If we know that dg1 and dg2 fix
a common line through the origin in R

2 we can say more strongly that
dg1 = dg2.

1.10 Behold, The Double Octagon!

We will compute the Veech group of the translation surface associated to the
Euclidean isosceles triangle having small angle π/8. As we saw in §1.3, this
surface is obtained from a gluing diagram involving two regular Euclidean
octagons. Each side of one octagon is glued to the opposite side of the other.
Let Σ be this surface.

Theorem 1.7 V (Σ) is the even subgroup of the (4,∞,∞) reflection triangle

group.
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The (4,∞,∞) triangle group is the group generated by the three hyper-
bolic reflections R1, R2, R3 considered in the previous subsection. The even

subgroup consists of elements made from composing an even number of these
elements. Equivalently, the even subgroup is the subgroup consisting of ori-
entation preserving elements. The even subgroup has index 2 in the whole
group.

We will sketch a proof of Theorem 1.7. To make things work well, we
define an anti-affine automorphism to be a homeomorphism of Σ which is
locally anti-affine, meaning that the map locally has the form x → L(x)+C,
where L is an orientation-reversing linear map and C is some constant vector.
The linear reflections considered in the previous subsection are of this form.

Let ̂A(Σ) be the group of these maps, and let ̂V = ρ( ̂A), where ρ is the
differential representation as above. We will show that ̂V coincides with the
group ̂G generated by the reflections in the sides of the (4,∞,∞) triangle.
The even elements of ̂A are orientation preserving and the rest are orienta-
tion reversing. So, the Veech group corresponds to the images of the even
elements.

Figure 18.5. The first cross

Figure 18.5 shows the octagons involved in the gluing diagram for Σ.
Again, each side of the left octagon is glued to the opposite side of the right
octagon by a translation. Simultaneous reflection in the vertical sides of
Σ induces an element T1 of ̂A. The differential of this map, evaluated at
the center of the first octagon, fixes the vertical line through the center and
reverses the horizontal line. The element ±dT1 therefore corresponds to the
first plus in Figure 18.4. Hence ρ(±T1) = R1. Figure 18.6 does for R2 what
Figure 18.5 does for R1. Here we take T2 to be simultaneous reflection in the
diagonals of positive slope.
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Figure 18.6. The second cross

So far we have used fairly trivial symmetries of our surface. Now we
have to do something nontrivial to see the anti-affine automorphism that
corresponds to the third cross. Figure 18.7 shows the cross {L1, L2} we are
aiming for, drawn on one of the octagons. The extra line L3 will be explained
momentarily.

2

L

LL

3

1

Figure 18.7. The third cross

We will produce an (anti-affine) automorphism g : Σ → Σ such that g
fixes L2 pointwise and g(L1) = L3 in a length-preserving and height-reversing
way. That is, g maps the top vertex of L1 to the bottom vertex of L3.
At the same time, the map T2 fixes L2 pointwise and maps L3 to L1 in a
length-preserving way and height-preserving way. But then the composition
T3 = T2 ◦ g fixes L2 pointwise and reverses L1. By construction, the maps
±T3 correspond to our third cross. We set R3 = ρ(±T3), and we have the
desired map.
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Figure 18.8. Cylinder decomposition

Now we turn our attention to the construction of the map g. Figure 18.8
shows a decomposition of Σ into 4 flat cylinders, labelled A, B, C, D. Re-
member, each side of the left octagon is glued to the opposite side of the
right octagon. Thus, for instance, the two A pieces on the left and right glue
together to make the A cylinder. The A and B cylinders are isometric to
each other and the C and D cylinders are isometric to each other. Here is
the miracle that makes everything work.

Exercise 13. Prove that the A and C cylinders are similar to each other.
Hence, all 4 cylinders are similar to each other.

For starters, we say in advance that g commutes with the symmetry which
swaps the two octagons. Figure 18.9 shows how g acts on one of the octagons,
at least in a neighborhood of the line L2. We will arrange that g maps the
points labelled x to the points labelled y, in the manner suggested by the
arrows. These points are at the midpoints of the relevant edges.

x

x

y

y

Figure 18.9. Action of the automorphism
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Assume for the moment that there really is a locally affine automorphism
of Σ that has this action. That is, assume that g really exists. By construc-
tion g fixes L2 pointwise and g maps L1 to L3 in a length-preserving and
height-reversing way. The point is that L1 connects the two x points shown
in Figure 18.9 and L3 connects the two y points shown in Figure 18.9.

It only remains to show that g actually exists. We will construct g by
doing Dehn twists on each cylinder and showing that they patch together
correctly. First of all, we define g in a neighborhood of the “centerline” L2.
We start extending g outward until it is defined on the A cylinder. The lines
connecting the x points to the y points glue together to form the central
loops of the A and B cylinders. By construction g shifts these central loops
half way around. The other boundary component of A is twice as far from
the centerline as is the central loop of A. Arguing by proportionality, we
see that g shifts the other boundary component of A “all the way around”,
which is to say that g pointwise fixes the other boundary component of A.
In short, g is a Dehn twist of A. The same goes for B.

Since C is similar to A, we know that C admits a Dehn twist g′ such that
dg′ and dg are similar. Since A and C share a common boundary component,
we can say more strongly that dg′ = dg. In short, we can say that C admits
a Dehn twist having the same differential as dg. But this is just the same
as saying that g extends continuously to C. The same goes for D. The key
is that g pointwise fixes the common boundaries of all these cylinders. This
establishes the existence of g.

Now we know that ̂V (Σ) contains the (4,∞,∞) reflection triangle group.
Hence, the Veech group V (Σ) contains the even subgroup of the (4,∞,∞)
reflection triangle group. To finish our proof, we will show that ̂V (Σ) is pre-
cisely the reflection triangle group. Let Y denote the (4,∞,∞) triangle. Let
̂G be the group generated by hyperbolic reflections in the sides of Y .

Exercise 11 (Challenge). Suppose that Γ is a group acting properly dis-
continuously on H

2 and ̂G ⊂ Γ. Prove that either Γ = ̂G or else Γ is the
group generated by the reflections in the sides of the geodesic triangle ob-
tained by bisecting Y in half.

If ̂V does not equal ̂G, then Σ has an extra isometric symmetry which
fixes the centers of the octagons. (This corresponds to the extra element,
reflection in the bisector of Y .) But the octagons do not have any line of
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symmetry between the two drawn in our figures above. Hence, this extra
symmetry does not exist. Hence ̂V (Σ) = ̂G. This is what we wanted to
prove.

Exercise 12 (Challenge). Do all the same things as above for the transla-
tion surface associated to the isosceles triangle having small angles π/n for
n = 4, 6, 8, . . ..
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