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The purpose of these notes is to introduce projective geometry, to estab-
lish some basic facts about projective curves (the lowest dimensional kind
of algebraic variety), and to sketch a proof of the famous Poncelet Porism.
These notes have some exercises embedded in them. I wrote most of these
notes for a class I taught a few years ago, which was essentially about elliptic
curves. I put in some more stuff which people at ICERM might be interested
in.

1 The Projective Plane

1.1 Basic Definition

For any field F , the projective plane P 2(F ) is the set of equivalence classes
of nonzero points in F

3, where the equivalence relation is given by

(x, y, z) ∼ (rx, ry, rz)

for any nonzero r ∈ F . Let F 2 be the ordinary plane (defined relative to the
field F .) There is an injective map from F

2 into P 2(F ) given by

(x, y) → [(x, y, 1)],

the equivalence class of the point (x, y, 1). In this way, we think of F 2 as a
subset of P 2(F ).

A set S ⊂ F
3 is called a cone if it has the following property: For all

v ∈ S and all nonzero r ∈ F , we have rv ∈ S. Given a cone S, we define the
projectivization [S] ⊂ P 2(F ) to be the set of points [v] such that v ∈ S.
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These notes will concentrate on the projective plane, but in general P n(F )
has the same kind of definition. It is the space of equivalence classes of
nonzero vectors in F

n+1. Equivalently, P n(F ) is the space of 1-dimensional
subspaces of F n+1. To consider a special case, note that P 3(R) is obtained
from the sphere S3 and identifying antipodal points. The idea here is that any
nonzero vector in R

4 is equivalent to a unit vector, and the only equivalent
unit vectors are those at antipodal points. But, based on our understanding
of the spin cover, we see that SO(3) has the same description. Therefore
SO(3) and P 3(R) are the same manifold!

1.2 Lines

A line in the projective plane is the set of equivalence classes of points in a 2-
dimensional F -subspace of F 3. In other words, a line is the set of equivalence
classes which solve the equation ax+ by + cz = 0 for some a, b, c ∈ F . That
is, a line is the projectivization of a plane through the origin. The set of lines
in P 2(F ) is often known as the dual projective plane. Think about it: Each
line is specified by a triple (a, b, c), where at least one entry is nonzero, and
the two triples (a, b, c) and (ra, rb, rc) give rise to the same lines.

Note that P 2(F ) − F
2 is the line consisting of solutions to z = 0. This

particular line is the line at infinity and we sometimes write it as L∞.

Exercise 1: Prove that every two distinct lines in P 2(F ) intersect in a
unique point. Likewise, prove that every two distinct points in P 2(F ) are
contained in a unique line.

Exercise 2: Let F be a finite field of order N = pn. How many points
and lines does P 2(F ) have.

The cross product is useful for computing in the projective plane. We
can represent a point by a vector V ∈ F

3. The line through two points
represented by V and W is represented by V ×W . Likewise, we can represent
lines by vectors. The intersection of the lines represented by V and W is
represented by V ×W . From this description, you see that the two operations
of joining two points by a line and meeting two lines in the intersection point
are completely interchangeable. Note that V ×W is always nonzero if V and
W are not multiples of each other. You can use this approach to help with
Exercise 1 above.
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1.3 Projective Transformations

A linear isomorphism from F
3 to itself respects equivalence classes, and

therefore induces a map from P 2(F ) to itself. This map is called a projective

transformation. A projective transformation is always a bijection which maps
lines to lines. In case F = R or F = C, the projective transformations
are continuous. The set of projective transformations forms a group, often
known as the projective group. The Lie group of projective transformations is
denoted PGL3(F ). At least when F = R, this group is 8 dimensional. There
is a unique projective transformation of P 2(R) which maps any quadruple
of general position points to any other quadruple of general position points.

The projective transformations have the beautiful property that they
maps lines to lines. This derives from the fact that an invertible linear trans-
formation maps a 2-dimensional vector subspace to a 2-dimensional vector
subspace. At least over the reals and complex numbers, projective transfor-
mations are characterized by this property.

Exercise 3: Let h : P 2(R) → P 2(R) be a homeomorphism which maps
lines to lines. Prove that h is a projective transformation.

Projective transformations mimic our vision. Suppose that we draw a
picture on a square, and then we hold up the square obliquely and look
at it. The resulting picture is the image of the one on the square under a
projective transformation. You can use this principle to draw in perspective.
For instance, suppose that a little red spot is at the center of the square.
This spot is the place where the two diagonals of the square intersect. To
locate the point on the quadrilateral you see, intersect the diagonals of the
quadrilateral and that is where you should put the red spot.

Projective transformations do not preserve distances, but they do preserve
something called the cross ratio. Given 4 points a, b, c, d ∈ F , we define

[a, b, c, d] =
(a− c)(b− d)

(a− b)(c− d)
(1)

Here we are identifying F with the subset of the affine patch of the form
(x, 0, 1). The cross ratio is invariant under any projective transformation
which preserves F . This lets us define the notion more generally. Given any
4 collinear points in P 2(F ), all on a line L, we can find projective trans-
formation which maps (A,B,C,D) to points (a, b, c, d) as above. We then
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define [A,B,C,D] = [a, b, c, d]. From what we have said about invariance,
this value is indepenent of any choices we make in mapping L to F .

The cross ratio can also be defined as follows. Represent the points
A,B,C,D by vectors of the same name. Then consider the quantity

(A× C) ∗ (B ×D)

(A×B) ∗ (C ×D)
. (2)

Here (∗) denotes pointwise multiplication:

(a1, a2, b2) ∗ (b1, b2, b3) = (a1b1, a2b2.a3.b3).

The quantity in Equation 2 has the form (x, x, x), and the quantity x is the
cross ratio.

1.4 The Hilbert Metric

Now we specialize to the real projective plane P 2(R). A set C ⊂ P 2(R) is
convex if there is a projective transformation T such that T (C) ⊂ R

2, the
affine patch, and T (C) is convex in the ordinary sense. When C is open and
convex, there is a canonical metric on C called the Hilbert metric. Given
x, y ∈ C we define

d(x, y) = log([w, x, y, z]) (3)

Here w, y are the two points on ∂C such that w, x, y, z are collinear, on a line
L, and appear in order in the line segment L ∩ C.

The Hilbert metric is projectively natural. If T : C → C is the restriction
of a projective transformation, then T is an isometry. As a special case, the
Hilbert metric on the open unit disk gives a metric which is isometric to the
Klein model of the hyperbolic plane.

Exercise 4: Prove that the Hilbert metric is indeed a metric on any open
convex set C. Hint: The triangle inequality is the interesting step. Use
monotonicity properties of the cross ratio to reduce to the case of hexagons.

Though we are concentrating on the projective plane, we note that the
cross ratio also makes sense in projective space, and one can define a metric
on any open convex subset of P n(R). When you do this for the open unit
ball, you get hyperbolic space of the appropriate dimension.
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Exercise 5: Contemplate the Hilbert metric on an open equilateral trian-
gle. This metric in this case is also known as the Hex metric. More generally
contemplate the Hilbert metric on convex polygons. What is it like? What
properties does it have? (Hint: ask Daryl Cooper.)

2 Homogeneous Polynomials

2.1 Basic Definition

Given a triple I = (a1, a2, a3), we define

XI = xa1
1 xa2

1 xa3
3 . (4)

Here a1, a2, a3 are non-negative integers. We define |I| = a1 + a2 + a3. We
say that a homogeneous polynomial of degree d (in 3 variables) over the field
F is a polynomial of the form

∑

|I|=d

cIX
I , cI ∈ F . (5)

The variables here are x1, x2, x3. Sometimes it is convenient to use the vari-
ables x, y, z in place of x1, x2, x3.

Exercise 6: Let P be a degree d homogeneous polynomial and let T be
a projective transformation. Prove that P ◦ T is another homogeneous poly-
nomial of degree d.

2.2 Homogenization and Dehomogenization

A degree d polynomial in 2 variables has a homogenization, where we just pad
the polynomial with suitable powers of the third variable to get something
that is homogeneous. An example should suffice to explain this.

x5 + 3x2y2 + x2y − 5 =⇒ x5 + 3x2y2z + x2yz2 − 5z5.

Conversely, every homogeneous polynomial of degree d in 3 variables has a
dehomogenization, obtained by setting the third variable to 1. The operations
of homogenization and dehomogenization are obviously inverses of each other.
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2.3 Projective and Affine Curves

Let P be a homogeneous polynomial of degree d. If v ∈ F
3 and r ∈ F , we

have
P (rv) = rdP (v). (6)

Therefore, when r 6= 0, we have P (rv) = 0 if and only if P (v) = 0. In other
words, the solution P = 0 is a cone in F

3. Because of this fact, the following
definition makes sense.

VP = {[v]| P (v) = 0} ⊂ P 2(F )}. (7)

This VP is just the projectivization of the solution set P = 0. The set VP is
known as a projective curve.

A projective curve is a kind of completion of the solution set to a poly-
nomial. Suppose that p(x, y) is a degree d polynomial in 2 variables and
P (x, y, z) is the homogenization. Let Vp = {(x, y)| p(x, y) = 0}. The set Vp

is known as an affine curve. Since F
2 is naturally a subset of P 2(F ), in the

way described above, we have the inclusion

Vp ⊂ F
2 ⊂ P 2(F ). (8)

Exercise 7: Interpreting Vp as a subset of VP , prove that Vp = VP ∩ F
2.

So, the projective curve VP is obtained from Vp by adjoining the points of
P 2(F )− F

2 where P vanishes.

2.4 Nonsingular Curves

It makes sense to take the formal partial derivatives of a polynomial over any
field. In particular, the gradient

∇P =
(
dP

dx
,
dP

dy
,
dP

dz

)
(9)

makes sense. We say that a singular point of P is a point v 6= 0 such that
P (v) = 0 and ∇P (v) = 0. If r ∈ F is nonzero, then v is a singular point if
and only if rv is a singular point. The polynomial P is called nonsingular if
it has no singular points. The projective curve VP is called nonsingular if P
is nonsingular.

When it comes time to discuss elliptic curves, we will always work with
nonsingular ones.
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Exercise 8: Suppose that V is a nonsingular projective curve and T is a
projective transformation. Prove that T (V ) is also a nonsingular projective
curve. This is kind of a painful exercise in the chain rule.

2.5 The Tangent Line

Let P be a nonsingular projective curve and let [v] ∈ P 2(F ) be a point. The
tangent line to P at [v] is defined to be the line determined by the equation

∇P (v) · (x, y, z) = 0. (10)

This is a line through the origin. In case F = R you can think about this
geometrically. In R

3, the tangent plane to the level set P (x, y, z) = 0 at the
point (x0, y0, z0) is given by the equation

((x, y, z)− (z0, y0, z0)) · ∇P = 0.

Here we are assuming that P (x0, y0, z0) = 0.
Since P is a homogeneous polynomial, P = 0 along the line through

(x0, y0, z0). This means that ∇P (x0, y0, z0) · (x0, y0, z0) = 0. (This works in
any field, but it requires an algebraic proof in general.) Therefore, in this
case, the equation of the tangent plane simplifies to

(x, y, z) · ∇P = 0.

So, in R
3 the plane Π0 given by Equation 10 is a good approximation along

the line through (x0, y0, z0) to the level set P (x, y, z) = 0. Both sets are
cones, and so the projectivization of the tangent plane (the tangent line) is
a good approximation of the projectivization of the polynomial level set (the
projective curve).

Exercise 9: Let f(x, y) be a polynomial in 2 variables, and let P (x, y, z)
be its homogenization. Let (x0, y0) be some point where f(x0, y0) = 0 and
∇f(x0, y0) 6= 0. We think of (x0, y0) as a point of P 2(R) by identifying it
with [x0, y0, 1], as above. Prove that the tangent line to the level set of f
at (x0, y0) is exactly the projectivization of the plane given by Equation 10.
In other words, reconcile the definition of tangent line given above with the
usual definition given in a calculus class. This is also a bit tedious.
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3 The Poncelet Porism

Let E0 and E1 be two ellipses, with E0 contained in the interior of the region
bounded by E1 as shown in Figure 1 below. We call a polygon P sandwiched

between E0 and E1 if the vertices of P are contained in E1 and the edges
of P are tangent to E0. One would also say that P is inscribed in E1 and
circumscribed about E0. Poncelet’s porism says that if some P exists, there
is in fact a continuous family Pt of such polygons, such that P = P0. The
family Pt sort of circulates around E0 and E1, except that the shapes subtly
change as the family moves around. In general, the polygons in the family
are not projectively equivalent. This fact makes the Poncelet Porism deeper
than the Steiner Porism. (The Steiner Porism makes a similar statement
about necklaces of circles all tangent to two circles and is much easier to
prove.)

Here I’ll present a fairly classical proof of the Poncelet porism. This proof
is similar to the one found in the following reference:

P. Griffiths and J. Harris, A Poncelet Theorem in Space, Comment Math
Helvetici, 52 (1977) pp 145-160

The proof I present is exerpted pretty much word for work from a paper I
wrote entitled The Poncelet Grid . This proof is a bit terse, so ask me about
it if you have questions.

We can apply a projective transformation and normalize so that E0 is the
unit circle and

E1 = {(x, y)| (x/a)2 + (y/b)2 = 1}, (11)

where a > b > 1. We ignore the relatively trivial case when a = b. Actually,
this normalization is not so important for the sketch we give here, but in
the paper I used it for other purposes. The main advantage is that the
normalization makes some of the equations more concrete.

We give E0 the counterclockwise orientation. At each point p ∈ E0 the
tangent ray to E0 at p intersects E1 in a point q. There is a unique point
r ∈ E0 such that r 6= p and the ray −→qr contains the tangent ray to E0 at r.
Figure 1 shows the situation.
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E1

E0

p

q
r=f(p)

Figure 1

We define f : E0 → E0 by f(p) = r. The point p is contained in an edge of
a Poncelet n-gon if and only if fn(p) = p. Poncelet’s porism says, given two
points p, p′ ∈ E0, we have fn(p) = p if and only if fn(p′) = p′. This result is
proved by showing that f is conjugate to a rotation of a circle.

Here we sketch (a variant of) the classical argument. We change the
notation somewhat and let P (C) denote the complex projective plane. We
make this change so that we can gracefully denote the dual plane as P ∗(C).
Let E0(C) and E1(C) be the conics in P (C) which extend E0 and E1. In
other words, we just take the equations for E0 and E1 and solve them over
the complex numbers. There are 4 complex lines which are simultaneously
tangent to E0(C) and E1(C).

Lemma 3.1 The 4 complex lines simultaneously tangent to E0 and E1 have

the form ±icx± dy = 1, where

c2 =
b2 − 1

a2 − b2
; d2 = c2 + 1. (12)

Proof: Let P ∗(C) denote the dual projective plane. There is a projective
duality δ : P (C) → P ∗(C) which carries the line ax + by = 1, considered
as a subset of P (C), to the point (a, b) ∈ P ∗(C). Let S(Ej) denote the
set of lines tangent to Ej(C). Then δ(S(E0)) is the conic having equation
x2+ y2 = 1 and δ(S(E1)) is the conic having equation (ax)2+(by)2 = 1. The
intersection points of these dual conics are (±ic,±d), where c and d are as
in Equation (12). The result follows immediately. ♠
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Let T denote the set of pairs (q, l) where q ∈ E1(C) and l is a complex
line containing q and tangent to E0(C). We define π : T → E0(C), by the
equation π(q, l) = l ∩ E0(C). The complex line lp, tangent to E0(C) at p,
intersects E1(C) in either 1 or 2 points, depending on whether or not lp is
also tangent to E1(C). Hence π is a double branched cover, branched at
4 points. This forces T to be a torus. The inclusion T →֒ P (C) gives a
complex structure on T in which π is a holomorphic homeomorphism.

Like all complex tori, T has a Euclidean metric, unique up to scale, in
which all holomorphic and anti-holomorphic self-homeomorphisms are isome-
tries. This is the uniformization theorem for elliptic curves. There are two
natural involutions on T :

• We have i1(q, l) = (q, l′), where (generically) l′ is the other line through
q which is tangent to E0(C). The map i1 has 4 fixed points; these are
pairs (q, l) where q ∈ E0(C) ∩ E1(C).

• We have i2(q, l) = (q′, l) where (generically) q′ is the other point of
l ∩ E1(C). The map i2 has 4 fixed points; these are the pairs (q, l)
where l is tangent to both E0(C) and E1(C).

The fixed points of i1 are completely distinct from the fixed points of i2.
Hence f̃ := i1 ◦ i2 acts as a translation−i.e. with no fixed points.

The set π−1(E0) consists of two circles, Ẽ0 and Ẽ ′
0. We label so that Ẽ0

consists of elements (q, l) where l contains a ray tangent to E0, pointing in
the counterclockwise direction, and q is on this ray. (Compare Figure 1.)
The map π intertwines the action of f̃ on Ẽ0 with the action of f on E0.
Complex conjugation preserves both Ẽ0 and Ẽ ′

0 and hence induces an anti-
holomorphic isometry of T . The fixed point set is exactly π−1(E0). Since Ẽ0

is one component of the fixed point set of an isometry, Ẽ0 is a closed geodesic
on T . All in all, f̃ is a free isometry of Ẽ0, which is to say, a rotation. This
proves that f is conjugate to a rotation.
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