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1 Complex Polynomals

A complex polynomial is an expression of the form

P (z) = c0 + c1z + ...+ cnz
n,

where c0, ..., cn are complex numbers (called coefficients) and z is the variable.
The number n is called the degree of P , at least when P is written so that
cn 6= 0. We’ll always divide through by cn so that cn = 1.

A root of P is a value of z so that P (z) = 0. (Dividing through by cn
doesn’t change the roots.) Some polynomials have no real roots, even if they
have real coefficients. The polynomial P (z) = z2 + 1 has this property.

The history of finding roots of polynomials goes back thousands of years.
It wasn’t until the 1800s, however, that we had a good picture of what is
going on in general. The goal of these notes is to sketch a proof of the most
famous theorem in this whole business.

Theorem 1.1 Every complex polynomial has a root.

This theorem is called the Fundamental Theorem of Algebra, and it is
due to Gauss. It seems that Gauss proved the theorem in 1799, though his
original proof had some gaps. The first complete proof is credited to Argand
in 1806.

The proof I’m going to sketch has a “topological flavor”. It only depends
on general features of polynomials, and the notion of continuity. It seems
more or less obvious, though some of these obvious steps are a little tricky
to make precise.
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2 Continuous Loops

A function f is continuous at a point x0 if the following statement is true: For
any ε > 0 there is a δ > 0 so that |x−x0| < δ implies that |f(x)−f(x0)| < ε.
Informally, f is continuous at x0 if, when you change the value of x0 a little,
the value of f only changes a little. The function f is called continuous if it
is continuous at all points where it is defined.

In a calculus class, this definition is usually made for real valued functions
– i.e. for the case when x0 and x and f(x0) and f(x) are all real numbers.
However, the definition also makes sense when x and x0 are points in a circle
and f(x0) and f(x) are complex numbers. This leads to the main definition
of this section: A continuous loop is a continuous map f : C → C, where C
is a circle. So, the input to f is a point on the circle C, and the output is a
complex number – i.e., a point in C.

Given a complex polynomial P , and a positive number R, we can look
at the map P : CR → C. Here CR is the set of complex numbers having
norm R. That is, CR is the circle of radius R centered at the origin. We are
looking at what P does to the points on CR. The map P : CR → C is a
continuous loop. So, for each value of R, you get a different continuous loop.

3 Winding Number

Suppose that f : C → C is a continuous loop with the property that the
image f(C) does not contain the origin. (The origin is the point 0.) We
can assign an integer to the curve f(C) like this: We trace C around coun-
terclockwise. As we trace C around, we simultaneously trace f(C) around,
standing at the origin and looking at f(C). When we have completed one
full circuit, our head is looking in the same direction that we started but
our neck has been twisted some number of times, either clockwise or coun-
terclockwise. The winding number of f(C) is defined to be k if our neck has
been twisted k times counterclockwise and −k if our neck has been twisted
k times clockwise. The winding number measures how many times the curve
f(C) winds around the origin.

This definition can be made more formal mathematically, but it is a
situation in which a picture says a thousand words. Figure 1 shows some
continuous loops and their winding numbers.
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Figure 1: Some winding numbers.

The curve f(C) is called linked if the winding number of f(C) is nonzero.
In Figure 1, the red and blue curves are linked and the magenta curve is not
linked.

Here is the case of the winding number we are interested in. Imagine that
P is a polynomial of degree n, and R is an enormous number. What is the
winding number of P : CR → C? Well, we can write P as

P = zn + (...)

When R is very large, the term zn is much larger than the other terms, and
the curve P (CR) looks almost like a circle of radius Rn which winds n times
around the origin. The point here is that the zn term accounts for most
of the shape, and the other terms are just “noise”. When R is small, the
picture, of course, is much more complicated.

In short, when R is large enough, the image P (CR) is linked.
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4 The End of the Proof

Suppose now that P is a degree n polynomial. We’ll assume that P has no
roots and derive a contradiction.

Consider the continuous loops P (CR), where R varies. When R is very
small, P (CR) is just a tiny loop concentrated around the point P (0) = c0.
Here is what the picture looks like, more or less:

Figure 2: P (CR) for R small.

Note that P (0) 6= 0 because P has no roots. So, when R is very small,
P (CR) is unlinked. On the other hand, when R is very large P (CR) is linked.
How can this happen? If we just wiggle P (CR) around a bit, the winding
number does not change. The point is that, when we trace out P (CR) and
the nearby version of P (CR), our head is essentially looking in the same
direction for both loops. So, at the end, our neck has been twisted the same
number of times for both.

The only way for the winding number to change, as we vary R, is that
P (CR) crosses over the origin for some value of R. But if P (CR) contains
the origin, there is some z ∈ CR so that P (z) = 0. This is a contradiction.

In short, if P has no roots, the winding properties of P (CR) are the same
for values of R. However, as we saw, the winding properties of P (CR) change
as R varies. That’s the end of the proof.
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5 Making it Rigorous

The argument I sketched seems a bit too informal to count as a rigorous
mathematical proof. So, in this section, I’ll explain how this is typically
made more rigorous. (Feel free to ignore this section.) The main step is
making the notion of winding number precise. There are many ways to do
this. One way to do it is through line integrals . This is something you learn
about in a multivariable calculus class.

It turns out that the winding number of f(C) can be defined as the line
integral

1

2π

∮
f(C)

α.

Here

α =
−y

x2 + y2
dx+

x

x2 + y2
dy.

The integral only makes sense when x2 + y2 6= 0. So, we can only define the
winding number for curves which do not contain 0.

In general, a 1-form Pdx+Qdy is called closed if

∂P

∂y
− ∂Q

∂x
= 0.

The form α has this property. For closed 1-forms, it follows from Green’s
theorem that the value of the line integral does not change if the path is
perturbed – as long as the perturbation never leaves the domain where the
1-form is defined. In our case, the domain is the whole plane, minus the
origin.

This is the justification for the claim that the winding number of P (CR)
cannot change as R values unless P (CR) contains the origin for some R
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