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1 The Arithmetic of Remainders

In class we have talked a fair amount about doing “arithmetic with remain-
ders” and now I’m going to explain what it means in a more formal way.
The set Z/n is defined to be {0, 1, ..., (n−1)}. An element of Z/n is usually
writen as [k] to distinguish it from the integer k.

Two elements in Z/n can be added and multiplied like this: First you
do the operation, and then you take the remainder upon division by n. For
instance, when n = 7, we have 5 + 6 = 11 → 4 and (5)(6) = 30 → 2.
So, in Z/7, we have [5] + [6] = [4] and [5][6] = [2]. (As usual, [5][6] is an
abbreviation for [5]× [6].)

If you forget about multiplication and just use addition, Z/n forms a
group. Also, the associative and commutative laws are true for both opera-
tions, and the distributive law is true. A set which has two operations that
satisfy all these properties is called a commutative ring .

Note that the ring Z/n is actually a field when n is prime. That is, you
can do division. For instance, in Z/7, we have

[2][4] = [1], [3][5] = [1], [6][6] = [1].

So, [1]/[4] is defined by be [2] because [2][4] = [1]. Likewise [1]/[5] = [3] and
[1]/[3] = [5] and [1]/[6] = [6]. Here is a more complicated calculation in Z/7:

[3]/[4] = [3]× [1]/[4] = [3]× [2] = [6].
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2 The Reduction Maps

Let’s consider Z/6 and Z/3 in detail. There is a map f : Z/6→ Z/3, which
considers the remainder of an element of Z/6 when you divide by 3. So

f([0]) = [0], f([1]) = [1], f([2]) = [2],

f([3]) = [0], f([4]) = [1], f([5]) = [2].

The map f has two special properties:

• f([a] + [b]) = f([a]) + f([b]).

• f([a][b]) = f([a])f([b]).

A map with these properties is called a ring homomorphism.
Let’s try it out for [4] and [5]. We have

f([4] + [5]) = f([3]) = [0], f([4]) + f([5]) = [1] + [2] = [0].

f([4][5]) = f([2]) = [2], f([4])f([5]) = [1][2] = [2].

So, it works in this one case. The other cases are similar.
What makes this work out is that 3 is a divisor of 6. So, you could say

that you are just forgetting some information when you map from Z/6 to
Z/3.

Things don’t work out nearly as well when you have two numbers which
don’t divide each other. For instance, consider the map from Z/5 into Z/3.
In this case [2][4] = [3] and f [3] = [0]. On the other hand,

f([2])f([4]) = [2][1] = [2].

So, f([2])f([4]) 6= f([2][4]). Fortunately, we’re never going to consider this
bad situation in these notes.

3 What is a p-adic Number

The p-adic numbers are defined in terms of a prime number p. For conve-
nience, I’ll always take p = 3, and (as in class) this case should suffice to
explain what you would do in general. The first few powers of 3 are

3, 9, 27, 81, 243, 729.
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We’re going to consider the sequence of rings Z/3, Z/9, Z/27, ...
There are maps

• f : Z/9→ Z/3,

• f : Z/27→ Z/9,

• f : Z/81→ Z/27,

and so on. A 3-adic integer is an infinite sequence of the form [a1], [a2], [a3], ...
where

• [a1] ∈ Z/3

• [z2] ∈ Z/9

• [z3] ∈ Z/27,

and so on, and

• f([a2]) = [a1],

• f([a3]) = [a2],

• f([a4]) = [a3],

and so on. I’ll write 3-adic integers like this

a1 ← a2 ← a3 ← a4 ← ...

The set of 3-adic integers is written as Z3.
Here is an example. 17 represents [2] in Z/3 and [8] in Z/9, and [17] for

Z/27, Z/243, etc. So

2← 8← 17← 17← 17← · · ·

is the 3-adic integer representing 17. We might abbreviate things and say
that 17 ∈ Z3.

3



4 Addition

3-adic numbers can be added. Here is the rule

(

a1 ← a2 ← a3 ← a4 ← ...
)

+
(

b1 ← b2 ← b3 ← b4 ← ...
)

=

[a1 + b1]← [a2 + b2]← [a3 + b3]← [a4 + b4]← ....

Let’s work out some examples. The number

0← 0← 0← · · ·

behaves just like the ordinary 0. If α is any 3-adic integer, then pretty clearly
0 + α = α + 0 = α.

Now consider the number

α =
(

2← 8← 26← 80← 242← · · ·
)

The nth term of α is 3n − 1. You can check that α really is a 3-adic integer.
Let

β =
(

1← 1← 1← · · ·
)

It is pretty clear that α + β = 0. We really should write α = −1. That is

−1 =
(

2← 8← 26← 80← 242← · · ·
)

The addition law is both commutative and associative. Does Z3 form a
group? We have already have an identity element, namely 0. We also have
−1. More generally, if

α =
(

a1 ← a2 ← a3 ← a4 ← ...
)

,

then
−α =

(

[3− a1]← [9− a2]← [27− a3]← [243− a4] · · ·
)

.

So, yes Z3 forms a group.
At the end of the last section, we saw that 17 ∈ Z3, and the construction

there works for any integer. So, in fact N ⊂ Z3. But then the construction
in this section shows that in fact Z ∈ Z3. So, the 3-adic integers are a group,
and they contain the integers as a subgroup.
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5 Multiplication

3-adic integers can be multiplied. Here is the rule.
(

a1 ← a2 ← a3 ← a4 ← ...
)

×
(

b1 ← b2 ← b3 ← b4 ← ...
)

=

[a1b1]← [a2b2]← [a3b3]← [a4b4]← ....

The multiplication law is commutative and associative, and also the distribu-
tive law holds. So, Z3 is a commutative ring.

Let’s work out an example. Starting the integer 2, we note that

• [2][2] = [1] in Z/3.

• [2][5] = [1] in Z/9.

• [2][14] = [1] in Z/27.

• [2][42] = [1] in Z/81.

and so on. In general, the nth term is (3n + 1)/2. So, if

α = 2← 5← 14← 42← · · ·

Then 2α = 1. So, we should write

1

2
=

(

2← 5← 14← 42← · · ·
)

If we want to figure out 1/4, we should compute (1/2)× (1/2). This gives

1

4
=

(

1← 7← 7← 63← · · ·
)

.

Where did this come from? Well, for instance

42× 42 = 1764

and 1764 represents [63] mod 243. It is harder to give a formula for the nth
term of 1/4, but since the multiplication rule is commutative and associative,
we know that

(1/4)× 4 = (1/2)× (1/2)× 2× 2 = (1/2)× 2× (1/2)× 2 = 1× 1 = 1
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It might seem that the last calculation is completely obvious, but there
is a subtle point. The thing we are calling 1/4 is the infinite chain above,
and we want to prove that it really deserves to be called 1/4. So, we need
to check that within the 3-adic integers this number really behaves like 1/4.
So, we want to multiply our number by 4 and check that we get 1. Rather
than do out the calculation, which would be quite hard without an explicit
formula, we are saved by the associative law, which lets us deduce that the
calculation would work out correctly.

So far we have seen that Z ⊂ Z3 and also 1/2 ∈ Z3 and 1/4 ∈ Z4. By
taking powers of 1/2, we see more generally that 1/8, 1/16, 1/32, ... all belong
to Z3. What about 1/3? Is there a number in Z3 which behaves like 1/3?
The answer is no. Suppose we had

1/3 =
(

a1 ← a2 ← · · ·
)

.

We know that
3 =

(

0→ 3→ 3→ 3 · · · .
)

.

But then we must have [a1][0] = [1], and this is impossible. So, we can say
that 1/3 6∈ Z3.

Here is a more general result along these lines.

Lemma 5.1 If q is divisible by 3 then p/q 6∈ Z3.

Proof: Suppose for the sake of contradiction that p/q ∈ Z3 and q is divisible
by 3. We can write

p/q =
(

a1 ← a2 ← · · ·
)

, p =
(

p1 ← p2 ← · · ·
)

, q =
(

q1 ← q2 ← · · ·
)

.

Since q is divisible by 3, we have q1 = 0. Since p/q is in lowest terms, we
know that p is not divisible by 3. This means that either p1 = 1 or p2 = 2.
But (p/q) × (q) = p. This means that [a1][0] = [1] or [a1][0] = [2]. Either
case is impossible. ♠

The other half of this result is also true:

Theorem 5.2 If q is not divisible by 3 then p/q ∈ Z3.

The two results together tell you exactly when p/q ∈ Z3. These notes
contain a proof of Theorem 5.2, as part of a larger result called Hensel’s
Lemma.
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6 Uncountability

You can put the members ofZ3 in one-to-one correspondence with the trinary
sequences. For instance, the trinary sequence 0, 1, 2, 1, ... corresponds to the
3-adic integer

0← 0 + 1(3)← 0 + 1(3) + 2(9)← 0 + 1(3) + 2(9) + 1(27)← · · ·

Since the set of trinary sequences is uncountable, so is Z3.
Since the integers and the rational numbers are countable sets, Z3 has

many elements which are neither integers nor rationals. What are these other
numbers like? For the most part, we don’t really know. (Same as with the
reals.) However, there are some things we can say. The remaining sections
of these notes, which are a bit tougher than the sections above, discuss roots
of polynomials in Z3.

7 Hensel’s Lemma

Consider the number

α =
(

1← 4← 13← 13← 175← · · ·
)

.

We compute that

α2 =
(

1← 7← 7← 7← 7← · · ·
)

It appears that
√
7 ∈ Z3. You might be skeptical that the pattern continues,

or that there even is a pattern. It turns out that this really does work. Here
is one of the great theorems about 3-adic numbers:

Theorem 7.1 Suppose that P (x) is a polynomial. Let P ′(x) denote the

derivative of P . Suppose, for one of the three numbers k = 0, 1, 2, that

[P (k)] = 0 in Z/3 and [P ′(k)] 6= 0 in Z/3. Then P has a root in Z3.

This result is often called Hensel’s Lemma. I’ll give a proof of Hensel’s
Lemma at the end of these notes. As you might guess, there is a version of
Hensel’s lemma which works for any prime, and not just 3. The formulation
is almost exactly the same.

Here are three applications of Hensel’s Lemma.
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Application 1: Let’s use Hensel’s lemma so show that
√
7 ∈ Z3. Consider

the polynomial P (x) = x2 − 7. We have P ′(x) = 2x. So, P (1) = [−6] = [0]
in Z/3 and also P ′(1) = [2] in Z/3. So, P does satisfy the hypotheses of
Hensel’s Lemma. Hensel’s Lemma now tells us that P has a root in Z3. This
root is what we are calling

√
7.

Application 2: Here is a fancier example. Consider the polynomial

P (x) = x99 − 7.

Taking the derivative, we get P ′(x) = 99x98. We have [P (1)] = [0] in Z/3
and [P ′(1)] = [99] = [1] in Z/3. So there is a 99th root of 7 in Z3.

Application 3: Let’s use Hensel’s Lemma to prove Theorem 5.2. So, sup-
pose that q is not divisible by 3. We want to show that p/q ∈ Z3. Since we
already know that p ∈ Z3, we just have to show that 1/q ∈ Z3. That is, we
have to show that the polynomial P (x) = qx− 1 has a root in Z3.

Since q is not divisible by 3 and Z/3 is a field, the expression [1]/[q] is
defined in Z/3. There is some k ∈ {0, 1, 2} so that [k][q] = [1] in Z/3. But
then P (k) = 0 in Z/3. Also, P ′(x) = q, so [P ′(k)] = [q] 6= [0] in Z/3. By
Hensel’s Lemma, P (x) has a root in Z3. That’s what we wanted to prove.

8 Taylor Series

To prove Hensel’s Lemma, we need one fact from Taylor series. Suppose
that P (x) is a polynomial and a is some number. Then there is always a
polynomial S(x) so that

P (x) = P (a) + P ′(a)(x− a) + (x− a)2S(x). (1)

To prove this, let

Q(x) = P (x)− P (a)− P ′(a)(x− a).

We have Q(a) = 0 and Q′(a) = 0. Since a is a root of Q, we can write
Q(x) = (x− a)R(x). But Q′(a) = R(a). So R(a) = 0. Since a is a root of R,
we have R(x) = (x − a)S(x). All in all, Q(x) = (x − a)2S(x). This is what
we wanted to prove.
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9 Proof of Hensel’s Lemma

Let’s say that we’re trying to solve the equation P (x) = 0 in Z/k. We would
write

P (x) = 0 mod k.

This is what the mod k indicates.
Let’s remember the setup for Hensel’s Lemma. We have a polynomial

P (x) and we know that

P (k) = 0 mod 3.

P ′(k) = 0 mod 3.

We set a1 = k. We want to show that P has a root in Z3. Let’s call our root
α and start it out with a1:

α =
(

a1 ← · · ·
)

.

The basic idea is to find α term by term, building on what we have so far in
order to get the next term.

We’re interested in find a sequence a1, a2, a3, ... so that

P (an) = 0 mod 3n,

where n = 1, 2, 3, ..., and also f(an+1) = an for n = 1, 2, 3, ... The fact that
P (a1) = 0 mod 3 is already given to us, and we want to find the rest of the
sequence. The condition that α is a 3-adic sequence says that

an+1 = an + 3nℓ (2)

for some l = 0, 1, 2 whose value probably depends on n. The idea is to find
ℓ in each case.

The main idea is that you combine Equations 1 and 2 and just do out
the algebra and see that it works. I’ll do it in the next section. There is one
last thing I want to say before doing out the algebra. Equation 1 works for
the integers, so it works “mod anything”. That is, when a is an integer, we
have

P (x) = P (a) + P ′(a)(x− a) + (x− a)2S(x) mod N, (3)

for any N we like.
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10 The Main Step in the Proof

Let’s find the (n + 1)st term given the first n terms. Equation 3 (using the
values a = an and N = 3n+1) tells us that

P (x) = P (an) + (x− an)P
′(an) + (x− an)

2S(an), mod 3n+1.

Now let’s plug in x = an+1 and use Equation 2.

P (an+1) = P (an) + (3nℓ)P ′(an) + (32nℓ2)S(a2) mod 3n+1.

Note that 32nℓ2 = 0 in Z/3n+1 because 2n ≥ n+ 1. This gives us

P (an+1) = P (an) + (3nℓ)P ′(an) mod 3n+1.

Since an is a root of P in Z/3n, we have P (an) = 3nb2 in Z/3n+1. This
gives us

P (an+1) = 3nbn + (3nℓ)P ′(an) mod 3n+1.

Dividing by 3n, we see that P (an+1) = 0 in Z/3n+1 provided that

bn + ℓP ′(an) = 0 mod 3.

Since an = an−1 = ... = a1 in Z/3, we have P ′(a1) = P ′(an) in Z/3. Hence
P ′(an) 6= 0 in Z/3. This means that we can solve this equation:

ℓ =
bn

P ′(an)
mod 3.

Plugging in this value of ℓ gives us an+1 so that P (an+1) = 0 in Z/3n+1.
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