(*This file computes the partial derivatives at the minimizer, the TBP. You can specify the exponent you would like to use. We are interested in the case when EXP=1 or EXP =2. For these exponents we use a modified version of the Cholesky Decomposition to check that all eigenvalues are greater than 1/10.*) (*inverse stereographic projection*) s[x_, y_] := {(2*x)/(1 + x*x + y*y), (2*y)/(1 + x*x + y*y), 1 - 2/(1 + x*x + y*y)}; (*These are the two basic functions making up the energy potential function*) F[x1_,y1_,EXP_]:=( a=s[x1,y1]; b={0,0,1}; c=1/(a-b).(a-b); Power[c,EXP/2]) G[x1_,y1_,x2_,y2_,EXP_]:=( a=s[x1,y1]; b=s[x2,y2]; c=1/(a-b).(a-b); Power[c,EXP/2]) (*Here is the energy function*) ff[x0_,x1_,y1_,x2_,y2_,x3_,y3_,EXP_]:=( list1={F[x0,0,EXP], F[x1,y1,EXP], F[x2,y2,EXP], F[x3,y3,EXP], G[x0,0,x1,y1,EXP], G[x0,0,x2,y2,EXP], G[x0,0,x3,y3,EXP], G[x1,y1,x2,y2,EXP], G[x1,y1,x3,y3,EXP], G[x2,y2,x3,y3,EXP]}; Sum[list1[[j]],{j,1,10}]) (**this function computes the second partial derivatives**) D2[i_,j_,EXP_]:=( (*The basic expression*) A=ff[x0,x1,y1,x2,y2,x3,y3,EXP]; (*The variable list*) VAR={x0,x1,y1,x2,y2,x3,y3}; (*The point corresponding to the TBP*) special={1,0,0,-1/2,Sqrt[3]/2,-1/2,-Sqrt[3]/2}; (*suitable second derivative*) a1=D[A,VAR[[i]],VAR[[j]]]; {x0,x1,y1,x2,y2,x3,y3}={1,0,0,-1/2,Sqrt[3]/2,-1/2,-Sqrt[3]/2}; a2=a1; Clear[x0,x1,y1,x2,y2,x3,y3]; a2) (*Now we imput the file that does the modified cholesky decomposition*) <