import java.applet.Applet; import java.awt.*; import java.awt.event.*; import java.applet.*; import java.awt.geom.*; import java.math.*; public class DataFundamentalRaw { /**This class lists the polygons in the renorm partition of the fundamental triangle. We also list the 5 polyhedra partitioning the top of the reflected triangle.**/ public static int limit(int k) { int[] A={41,41,41,41,4,3,2}; return(A[k]); } /**These are the tiles in the partition that are dynamical tiles. The rest are A-tiles.*/ public static int[] periodic(int k) { if(k<4) { int[] A={0,1,7,8,23,24,25,36};return(A); } if(k==4) { int[] A={1};return(A); } if(k==5) { int[] A={2};return(A); } return(null); } public static int[] getList(int k) { int[][] A={{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,24,25,26,27,28,29,30,31,32,33,34,35,36,39,40,42,45,47},{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28,29,30,31,32,33,34,35,36,38,41,43,44,46},{50,53,55,57,59,61,63,65,68,71,73,75,77,79,81,83,85,87,89,91,93,95,97,100,101,104,106,108,110,112,114,116,118,120,122,124,127,129,131,132,134},{51,52,54,56,58,60,62,66,69,70,72,74,76,78,80,82,84,86,88,90,92,94,96,99,102,103,105,107,109,111,113,115,117,119,121,123,126,128,130,133,135},{141,142,143,144},{145,146,147}};return(A[k]);} /**There is a total of 149 polygons that tile the small pieces of the fundamental triangle**/ public static int[][] P(int k) { int[][][]A={{{-3,2,-42,26},{-37,23,-8,5},{31,-19,-8,5}},{{52,-32,13,-8},{-181,112,-42,26},{52,-32,-97,60},{-3,2,-42,26}},{{-236,146,-55,34},{52,-32,13,-8},{-3,2,-42,26},{-58,36,13,-8},{-147,91,34,-21}},{{-58,36,13,-8},{-3,2,-42,26},{-58,36,-97,60},{175,-108,-42,26}},{{-181,112,-42,26},{-37,23,-8,5},{52,-32,-97,60}},{{175,-108,-42,26},{-58,36,-97,60},{31,-19,-8,5}},{{-3,2,0,0},{-236,146,-55,34},{-147,91,34,-21}},{{-37,23,-8,5},{-71,44,-16,10},{65,-40,-16,10},{31,-19,-8,5}},{{-71,44,-16,10},{-126,78,-3,2},{120,-74,-3,2},{65,-40,-16,10}},{{217,-134,52,-32},{-16,10,-3,2},{450,-278,-3,2}},{{353,-218,52,-32},{120,-74,-3,2},{586,-362,-3,2}},{{-71,44,162,-100},{73,-45,18,-11},{217,-134,52,-32},{450,-278,-3,2},{-592,366,-3,2},{-359,222,52,-32},{-215,133,18,-11}},{{65,-40,162,-100},{209,-129,18,-11},{353,-218,52,-32},{586,-362,-3,2},{-456,282,-3,2},{-223,138,52,-32},{-79,49,18,-11}},{{861,-532,-236,146},{1848,-1142,-3,2},{-126,78,-3,2}},{{997,-616,-236,146},{1984,-1226,-3,2},{10,-6,-3,2}},{{628,-388,285,-176},{-592,366,-3,2},{1848,-1142,-3,2},{861,-532,-236,146},{251,-155,-92,57}},{{764,-472,285,-176},{-456,282,-3,2},{1984,-1226,-3,2},{997,-616,-236,146},{387,-239,-92,57}},{{162,-100,-71,44},{-71,44,162,-100},{-215,133,18,-11}},{{298,-184,-71,44},{65,-40,162,-100},{-79,49,18,-11}},{{-359,222,52,-32},{628,-388,285,-176},{251,-155,-92,57}},{{-223,138,52,-32},{764,-472,285,-176},{387,-239,-92,57}},{{-71,44,-16,10},{73,-45,18,-11},{162,-100,-71,44}},{{65,-40,-16,10},{209,-129,18,-11},{298,-184,-71,44}},{{10,-6,-3,2},{-3,2,10,-6},{-45,28,10,-6}},{{-16,10,-3,2},{39,-24,10,-6},{-3,2,10,-6}},{{-126,78,-3,2},{-37,23,-24,15},{-3,2,10,-6},{31,-19,-24,15},{120,-74,-3,2}},{{120,-74,-3,2},{-113,70,-58,36},{120,-74,-113,70},{65,-40,-58,36}},{{-456,282,-3,2},{-223,138,230,-142},{10,-6,-3,2}},{{-401,248,230,-142},{586,-362,463,-286},{209,-129,86,-53}},{{-16,10,-3,2},{-37,23,-24,15},{-126,78,-3,2}},{{120,-74,-3,2},{-257,159,-380,235},{-1854,1146,-3,2}},{{-113,70,-58,36},{31,-19,-24,15},{120,-74,-113,70}},{{-456,282,-3,2},{-79,49,86,-53},{-223,138,230,-142}},{{2560,-1582,-3,2},{963,-595,-380,235},{586,-362,-3,2}},{{586,-362,-3,2},{209,-129,86,-53},{65,-40,-58,36},{-79,49,86,-53},{-456,282,-3,2}},{{586,-362,-3,2},{353,-218,230,-142},{586,-362,463,-286},{-401,248,230,-142}},{{-1854,1146,-3,2},{-257,159,-380,235},{353,-218,230,-142},{963,-595,-380,235},{2560,-1582,-3,2}},{{-3,2,10,-6},{5,-3,2,-1},{-11,7,2,-1}},{{-3,2,10,-6},{10,-6,23,-14},{-45,28,10,-6}},{{39,-24,10,-6},{-16,10,23,-14},{-3,2,10,-6}},{{-139,86,-32,20},{5,-3,2,-1},{94,-58,-87,54}},{{133,-82,-32,20},{-100,62,-87,54},{-11,7,2,-1}},{{94,-58,23,-14},{-139,86,-32,20},{94,-58,-87,54},{39,-24,-32,20}},{{-100,62,23,-14},{-45,28,-32,20},{-100,62,-87,54},{133,-82,-32,20}},{{-278,172,-45,28},{10,-6,23,-14},{-45,28,-32,20},{-100,62,23,-14},{-189,117,44,-27}},{{-194,120,-45,28},{94,-58,23,-14},{39,-24,-32,20},{-16,10,23,-14},{-105,65,44,-27}},{{-45,28,10,-6},{-278,172,-45,28},{-189,117,44,-27}},{{39,-24,10,-6},{-194,120,-45,28},{-105,65,44,-27}},{{5,-3,2,-1},{13,-8,4,-2},{-19,12,4,-2},{-11,7,2,-1}},{{13,-8,4,-2},{47,-29,-4,3},{-53,33,-4,3},{-19,12,4,-2}},{{13,-8,-38,24},{-21,13,-4,3},{47,-29,-4,3}},{{-19,12,-38,24},{-53,33,-4,3},{15,-9,-4,3}},{{36,-22,17,-10},{-197,122,-38,24},{36,-22,-93,58},{-19,12,-38,24}},{{68,-42,17,-10},{-165,102,-38,24},{68,-42,-93,58},{13,-8,-38,24}},{{-252,156,-51,32},{36,-22,17,-10},{-19,12,-38,24},{-74,46,17,-10},{-163,101,38,-23}},{{-220,136,-51,32},{68,-42,17,-10},{13,-8,-38,24},{-42,26,17,-10},{-131,81,38,-23}},{{-74,46,17,-10},{-19,12,-38,24},{-74,46,-93,58},{159,-98,-38,24}},{{-42,26,17,-10},{13,-8,-38,24},{-42,26,-93,58},{191,-118,-38,24}},{{-197,122,-38,24},{-53,33,-4,3},{36,-22,-93,58}},{{-165,102,-38,24},{-21,13,-4,3},{68,-42,-93,58}},{{159,-98,-38,24},{-74,46,-93,58},{15,-9,-4,3}},{{191,-118,-38,24},{-42,26,-93,58},{47,-29,-4,3}},{{-19,12,4,-2},{-252,156,-51,32},{-163,101,38,-23}},{{13,-8,4,-2},{-220,136,-51,32},{-131,81,38,-23}},{{47,-29,-4,3},{81,-50,-12,8},{-87,54,-12,8},{-53,33,-4,3}},{{-21,13,-4,3},{-55,34,-12,8},{81,-50,-12,8},{47,-29,-4,3}},{{-53,33,-4,3},{-87,54,-12,8},{49,-30,-12,8},{15,-9,-4,3}},{{81,-50,-12,8},{26,-16,1,0},{-32,20,1,0},{-87,54,-12,8}},{{-55,34,-12,8},{-110,68,1,0},{136,-84,1,0},{81,-50,-12,8}},{{-87,54,-12,8},{-142,88,1,0},{104,-64,1,0},{49,-30,-12,8}},{{201,-124,56,-34},{-32,20,1,0},{434,-268,1,0}},{{233,-144,56,-34},{0,0,1,0},{466,-288,1,0}},{{337,-208,56,-34},{104,-64,1,0},{570,-352,1,0}},{{369,-228,56,-34},{136,-84,1,0},{602,-372,1,0}},{{-87,54,166,-102},{57,-35,22,-13},{201,-124,56,-34},{434,-268,1,0},{-608,376,1,0},{-375,232,56,-34},{-231,143,22,-13}},{{-55,34,166,-102},{89,-55,22,-13},{233,-144,56,-34},{466,-288,1,0},{-576,356,1,0},{-343,212,56,-34},{-199,123,22,-13}},{{49,-30,166,-102},{193,-119,22,-13},{337,-208,56,-34},{570,-352,1,0},{-472,292,1,0},{-239,148,56,-34},{-95,59,22,-13}},{{81,-50,166,-102},{225,-139,22,-13},{369,-228,56,-34},{602,-372,1,0},{-440,272,1,0},{-207,128,56,-34},{-63,39,22,-13}},{{845,-522,-232,144},{1832,-1132,1,0},{-142,88,1,0}},{{877,-542,-232,144},{1864,-1152,1,0},{-110,68,1,0}},{{981,-606,-232,144},{1968,-1216,1,0},{-6,4,1,0}},{{1013,-626,-232,144},{2000,-1236,1,0},{26,-16,1,0}},{{612,-378,289,-178},{-608,376,1,0},{1832,-1132,1,0},{845,-522,-232,144},{235,-145,-88,55}},{{644,-398,289,-178},{-576,356,1,0},{1864,-1152,1,0},{877,-542,-232,144},{267,-165,-88,55}},{{748,-462,289,-178},{-472,292,1,0},{1968,-1216,1,0},{981,-606,-232,144},{371,-229,-88,55}},{{780,-482,289,-178},{-440,272,1,0},{2000,-1236,1,0},{1013,-626,-232,144},{403,-249,-88,55}},{{146,-90,-67,42},{-87,54,166,-102},{-231,143,22,-13}},{{178,-110,-67,42},{-55,34,166,-102},{-199,123,22,-13}},{{282,-174,-67,42},{49,-30,166,-102},{-95,59,22,-13}},{{314,-194,-67,42},{81,-50,166,-102},{-63,39,22,-13}},{{-375,232,56,-34},{612,-378,289,-178},{235,-145,-88,55}},{{-343,212,56,-34},{644,-398,289,-178},{267,-165,-88,55}},{{-239,148,56,-34},{748,-462,289,-178},{371,-229,-88,55}},{{-207,128,56,-34},{780,-482,289,-178},{403,-249,-88,55}},{{-87,54,-12,8},{57,-35,22,-13},{146,-90,-67,42}},{{-55,34,-12,8},{89,-55,22,-13},{178,-110,-67,42}},{{49,-30,-12,8},{193,-119,22,-13},{282,-174,-67,42}},{{81,-50,-12,8},{225,-139,22,-13},{314,-194,-67,42}},{{26,-16,1,0},{-29,18,14,-8},{23,-14,14,-8},{-32,20,1,0}},{{-32,20,1,0},{23,-14,14,-8},{-19,12,14,-8}},{{26,-16,1,0},{13,-8,14,-8},{-29,18,14,-8}},{{-110,68,1,0},{-21,13,-20,13},{13,-8,14,-8},{47,-29,-20,13},{136,-84,1,0}},{{-142,88,1,0},{-53,33,-20,13},{-19,12,14,-8},{15,-9,-20,13},{104,-64,1,0}},{{104,-64,1,0},{-129,80,-54,34},{104,-64,-109,68},{49,-30,-54,34}},{{136,-84,1,0},{-97,60,-54,34},{136,-84,-109,68},{81,-50,-54,34}},{{-472,292,1,0},{-239,148,234,-144},{-6,4,1,0}},{{-440,272,1,0},{-207,128,234,-144},{26,-16,1,0}},{{-417,258,234,-144},{570,-352,467,-288},{193,-119,90,-55}},{{-385,238,234,-144},{602,-372,467,-288},{225,-139,90,-55}},{{-32,20,1,0},{-53,33,-20,13},{-142,88,1,0}},{{0,0,1,0},{-21,13,-20,13},{-110,68,1,0}},{{104,-64,1,0},{-273,169,-376,233},{-1870,1156,1,0}},{{136,-84,1,0},{-241,149,-376,233},{-1838,1136,1,0}},{{-129,80,-54,34},{15,-9,-20,13},{104,-64,-109,68}},{{-97,60,-54,34},{47,-29,-20,13},{136,-84,-109,68}},{{-472,292,1,0},{-95,59,90,-55},{-239,148,234,-144}},{{-440,272,1,0},{-63,39,90,-55},{-207,128,234,-144}},{{2544,-1572,1,0},{947,-585,-376,233},{570,-352,1,0}},{{2576,-1592,1,0},{979,-605,-376,233},{602,-372,1,0}},{{570,-352,1,0},{193,-119,90,-55},{49,-30,-54,34},{-95,59,90,-55},{-472,292,1,0}},{{602,-372,1,0},{225,-139,90,-55},{81,-50,-54,34},{-63,39,90,-55},{-440,272,1,0}},{{570,-352,1,0},{337,-208,234,-144},{570,-352,467,-288},{-417,258,234,-144}},{{602,-372,1,0},{369,-228,234,-144},{602,-372,467,-288},{-385,238,234,-144}},{{-1870,1156,1,0},{-273,169,-376,233},{337,-208,234,-144},{947,-585,-376,233},{2544,-1572,1,0}},{{-1838,1136,1,0},{-241,149,-376,233},{369,-228,234,-144},{979,-605,-376,233},{2576,-1592,1,0}},{{-29,18,14,-8},{5,-3,6,-3},{-11,7,6,-3},{23,-14,14,-8}},{{23,-14,14,-8},{-32,20,27,-16},{-19,12,14,-8}},{{13,-8,14,-8},{26,-16,27,-16},{-29,18,14,-8}},{{-155,96,-28,18},{-11,7,6,-3},{78,-48,-83,52}},{{149,-92,-28,18},{-84,52,-83,52},{5,-3,6,-3}},{{78,-48,27,-16},{-155,96,-28,18},{78,-48,-83,52},{23,-14,-28,18}},{{-84,52,27,-16},{-29,18,-28,18},{-84,52,-83,52},{149,-92,-28,18}},{{-262,162,-41,26},{26,-16,27,-16},{-29,18,-28,18},{-84,52,27,-16},{-173,107,48,-29}},{{-210,130,-41,26},{78,-48,27,-16},{23,-14,-28,18},{-32,20,27,-16},{-121,75,48,-29}},{{-29,18,14,-8},{-262,162,-41,26},{-173,107,48,-29}},{{23,-14,14,-8},{-210,130,-41,26},{-121,75,48,-29}},{{5,-3,6,-3},{-3,2,-2,2},{-11,7,6,-3}},{{-6,4,1,0},{-19,12,14,-8},{-61,38,14,-8}},{{-19,12,14,-8},{-11,7,6,-3},{-27,17,6,-3},{-61,38,14,-8}},{{-11,7,6,-3},{-3,2,-2,2},{7,-4,-2,2},{-27,17,6,-3}},{{-3,2,-2,2},{-6,4,-5,4},{7,-4,-2,2}},{{7,-4,-2,2},{-6,4,-5,4},{7,-4,8,-4},{20,-12,-5,4}},{{20,-12,-5,4},{7,-4,8,-4},{20,-12,21,-12},{-35,22,8,-4}},{{-35,22,8,-4},{20,-12,21,-12},{-35,22,-34,22},{-90,56,21,-12}},{{-90,56,21,-12},{-35,22,-34,22},{-1,1,0,1}},{{-5,4,-2,2},{-18,12,-5,4},{-5,4,8,-4},{8,-4,-5,4}},{{37,-22,8,-4},{3,-1,0,1},{-18,12,21,-12}},{{-18,12,-5,4},{37,-22,8,-4},{-18,12,21,-12},{-5,4,8,-4}}};return(A[k]);} }