import java.applet.Applet; import java.awt.*; import java.awt.event.*; import java.applet.*; import java.awt.geom.*; import java.math.*; public class ProofReduction1 implements Runnable { int halt; Manager M; public ProofReduction1(Manager MM) { this.M=MM; } /**This class contains the proofs for the Fundamental Orbit Theorem. It also has the single test for the tile Q_2 that appears in our lemma about (3,0) being a fixed point of renormalization.**/ public void failMessage() { throw new ProofException("ProofReduction 1"); } public void run() { halt=1; int[] d=new int[7]; for(int i=0;i<7;++i) d[i]=M.C.CON_X.REDUCE1.L[i].on; if(d[0]==1) coverTest(); if(d[1]==1) renormValidityTest1(); if(d[2]==1) renormValidityTest2(); if(d[3]==1) renormValidityTest3(); if(d[4]==1) tautTest(); if(d[5]==1) superTautTest(); if(d[6]==1) superTautRenormTest(); } /**checks that each big tile is covered by the little ones.**/ public void coverTest() { for(int k=0;k<23;++k) { GoldenPolyWedge[] ALL=DataReduction.polyList(k); int total=ALL.length; GoldenPolyWedge big=DataReduction.getGoldenBig(k); System.out.print(k+" "); PolyCover.coverTest(ALL,total,big); } /**This is for the 11 supermin tiles*/ for(int k=0;k<12;++k) { GoldenPolyWedge[] ALL=DataReduction.polyListRenorm(k); int total=ALL.length; GoldenPolyWedge big=DataReduction.getSuperTautRenorm(k); PolyCover.coverTest(ALL,total,big); } } /**RENORM VALIDITY TESTS*/ /**This checks that the renorm tiles covering the 23 pieces are indeed A-renorm tiles.**/ public void renormValidityTest1() { System.out.println("start renorm validity test"); for(int k=0;k<23;++k) renormValidityTest1(k); } public boolean renormValidityTest1(int k) { System.out.println("go "+k); GoldenPolyWedge[] ALL=DataReduction.polyList(k); int i=0; while((halt==1)&&(i1) { boolean test1=VerifyReduction.zeroTest(new GoldenReal(5,0),z2.x); if(test1==false) failMessage(); } if(k==0) { boolean test1=VerifyReduction.zeroTest(new GoldenReal(2,0),z2.x); if(test1==false) failMessage(); } if(k==1) { for(int j=0;j