
1 Symmetrization: Proof of Lemma B4

These notes give an alternate proof of Lemma B4. We first repeat the pre-
liminary material on positive dominance.

1.1 Positive Dominance

See [S2] and [S3] for more details about the material here. LetG ∈ R[x1, ..., xn]
be a multivariable polynomial:

G =
∑
I

cIX
I , XI =

n∏
i=1

xIii . (1)

Given two multi-indices I and J , we write I � J if Ii ≤ Ji for all i. Define

GJ =
∑
I�J

cI , G∞ =
∑
I

cI . (2)

We call G weak positive dominant (WPD) if GJ ≥ 0 for all J and G∞ > 0.
We call G positive dominant if GJ > 0 for all J .

Lemma 1.1 (Weak Positive Dominance) If G is weak positive dominant
then G > 0 on (0, 1]n. If G is positive dominant then G > 0 on [0, 1]n.

Proof: We prove the first statement. The second one has almost the same
proof. Suppose n = 1. Let P (x) = a0 + a1x+ .... Let Ai = a0 + ...+ ai. The
proof goes by induction on the degree of P . The case deg(P ) = 0 is obvious.
Let x ∈ (0, 1]. We have

P (x) = a0 + a1x+ x2x
2 + · · ·+ anx

n ≥

x(A1 + a2x+ a3x
2 + · · · anxn−1) = xQ(x) > 0

Here Q(x) is WPD and has degree n− 1.
Now we consider the general case. We write

P = f0 + f1xk + ...+ fmx
m
k , fj ∈ R[x1, ..., xn−1]. (3)

Since P is WBP so are the functions Pj = f0 + ...+ fj. By induction on the
number of variables, Pj > 0 on (0, 1]n−1. But then, when we arbitrarily set
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the first n− 1 variables to values in (0, 1), the resulting polynomial in xn is
WPD. By the n = 1 case, this polynomial is positive for all xn ∈ (0, 1]. ♠

Polynomial Subdivision: Let P ∈ R[x1, ..., xn] as above. For any xj and
k ∈ {0, 1} we define

Sxj ,k(P )(x1, ..., xn) = P (x1, ..., xj−1, x
∗
j , xj+1, ..., xn), x∗j =

k

2
+
xj
2
. (4)

If Sxj ,k(P ) > 0 on (0, 1]n for k = 0, 1 then we also have P > 0 on (0, 1]n.

Positive Numerator Selection: If f = f1/f2 is a bounded rational func-
tion on [0, 1]n, written in so that f1, f2 have no common factors, we always
choose f2 so that f2(1, ..., 1) > 0. If we then show, one way or another, that
f1 > 0 on (0, 1]n we can conclude that f2 > 0 on (0, 1]n as well. The point
is that f2 cannot change sign because then f blows up. But then we can
conclude that f > 0 on (0, 1]n. We write num+(f) = f1.

1.2 Reduction to Two Halves

For ease of notation set qk = p′′k. Let D be the set of configurations (q0, q1, q3)
such that

1. 512q01 ∈ [416, 498]

2. 512q02 ∈ [0, 16].

3. 512q12 ∈ [−465,−348].

4. 512q32 ∈ [348, 465].

5. q11 = q31 = 0.

Lemma B4 does not involve the point p2, so we ignore it. The subset D ⊂
(R2)3 denotes the set of triples (q0, q1, q3) which satisfy the conditions for
inclusion in Υ′′. This set is not meant to be confused with the set from the
proof of Lemma B21, though it plays the same role in the proof here. We let
D± ⊂ D denote those configurations with

±(q12 + q32) ≥ 0. (5)

Obviously D = D+ ∪D−.
Lemma B4 is an immediate consequence of the following two results.
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Lemma 1.2 (B41) With respect to vertical symmetrization of configura-
tions in D+, the list {(0, 1), (0, 3)} is good for all s ≥ 2.

Lemma 1.3 (B42) With respect to vertical symmetrization of configura-
tions in D−, the list {(0, 1), (0, 3)} is good for all s ≥ 13.

Lemma 1351 has a straightforward proof that is similar in spirit to the
proof we gave for Lemma B21. Lemma 1352 is much trickier. As we remarked
after stating Lemma B4, the result is false if we replace 13 by 9 in the
statement. It took me quite some time to find a proof for Lemma B42.

1.3 Proof of Lemma B41

We adopt the convention that [u, v]t = u(1 − t) + vt. We define map φ± :
[0, 1]4 → (R2)3 as follows:

φ(a, b, c, d) = (q0(b, d), q1(a, c), q3(a, c)), (6)

512q0(b, d) = ([416, 498]b, 16d).

512q1(a, c) = (0,−[348, 465]a± 59c).

512q3(a, c) = (0,+[348, 465]a± 59c).

In these coordinates, the symmetrization operation is (a, b, c, d)→ (a, b, 0, 0).

Lemma 1.4 (B411) D± ⊂ φ±([0, 1]4).

Proof: This is just like the proof of Lemma B2111. The only non-obvious
point is why every pair (p12, p32) is reached by the map φ±. The essential
point is that for configurations in D± we have 512|p12 + p32| ≤ 2× 59. ♠

Following the same idea as in the proof of Lemma B21, we define

Fs =
(
‖Σ−1(q0)− Σ−1(q1)‖−s + ‖Σ−1(q0)− Σ−1(q3)‖−s

)
◦ φ+(a, b, c, d) (7)

Here Σ−1 is the inverse of stereographic projection. We want to show that
Fs(a, b, c, d) ≥ Fs(a, b, 0, 0) for all a, b, c, d ∈ [0, 1]4 and all s ≥ 2. By the
Convexity Lemma, it suffices to prove this for s = 2. Define

Φ(a, b, c, d) = num+(F2(a, b, c, d)− F2(a, b, 0, 0)). (8)

Let Φ|c=0 denote the polynomial we get by setting c = 0. We define other
such symbols similarly. Let ∇Φ denote the gradient of Φ.
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Lemma 1.5 (B412) Φc=0 and Φc=0 and ∇Φ · (0, 0, 1, 1) are weak positive
dominant and hence positive on (0, 1)4.

Proof: The Mathematica file LemmaB412.m does this calculation. ♠

We conclude from Lemma B412 that Φ is positive on (0, 1)4. Hence Φ > 0
on (0, 1)4. In this way, Lemma B41 is a consequence of Lemma B411 and
B412.

1.4 Proof of Lemma B42

Just keep make the parallel nature of Lemmas B41 and B42 more clear we
repeat Lemma B411.

Lemma 1.6 (B421) D± ⊂ φ±([0, 1]4).

Define
Ek = ‖Σ−1(qk)− Σ−1(q0)‖−2, k = 1, 3. (9)

Lemma B42 says that Et
1 + Et

3 ≥ 0 on D− as long as t > 13/2.
We could approach the proof of Lemma B42 just as we approached the

proof of Lemma B41. The polynomial that appears in what would be the
analogue of Lemma B412 has 102218 terms. I was able, finally, to show
directly that this polynomial is positive on (0, 1]4 but the argument is rather
complicated. I will sketch it at the end of this chapter. Here I will give a
different approach. I found this alternate approach here after a lot of trial
and error.

Lemma 1.7 (B422) Suppose that x1, y1, x2, y2 are positive numbers with

x2 = y2, 7x1+8y1 ≥ 7x2+8y2, 3x21+3y21−4x1y1 ≥ 3x22+3y22−4x2y2.

Then xt1 + yt1 ≥ xt2 + yt2 for all t ≥ 13/2.

Lemma 1.8 (B423) On D−, the function F = 7E1 + 8E3 is not increased
by vertical symmetrization.

Proof: We define Φ in terms of F , exactly as in Equations 7 and 8, ex-
cept that we use φ− in place of φ+. The calculation in the Mathematica file
LemmaB422.m shows that the analogue Lemma B413 holds for this version of
Φ. The rest of the proof is the same as for Lemma B413. ♠
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Lemma 1.9 (B424) On D−, the function F = 3E2
1 + 3E2

3 − 4E1E3 is not
increased by vertical symmetrization.

Lemma B42 follows directly from Lemmas B2351, B422, B423, B424.

1.5 Proof of Lemma B421

By the Convexity Lemma, it suffices to prove this result for the exponent
t = 13/2. All the functions involved are homogeneous, so without loss of
generality it suffices to consider the case when x2 = y2 = 1. Let Λ1,Λ2,Λ3

respectively denote the level sets

7x+ 8y = 15, 3x2 + 3y2 − 4xy = 2, x13/2 + y13/2 = 2.

We show that if Λ1,Λ2 separate (x, y) from the origin then so does Λ3.
For j = 1, 2, 3 let fj(m) be the value where the line y = mx intersects

Λj in the positive quadrant. Here we take m > 0. There is a unique such
point because, by homogeneity, each of our functions is increasing on the line
y = mx as we move away from the origin. Letting m = y/x, we see that Λj

separates (x, y) from the origin if and only if fj(m) ≤ x. By hypothesis, we
have fj(m) ≤ x for m = 1, 2.

Lemma 1.10 (B4211) f3(m) < f2(m) when m ∈ (1, 9/8].

Proof: Both f2(m) and f3(m) are positive for m positive. We compute

β(t) = f 26
2 (t2)− f 26

3 (t2) =
( 2

3− 4t2 + 3t4

)13
−
( 2

1 + t13

)4
.

We want to see that this expression is positive on (1, 9/8]. This is the same
as showing that γ(u) = β(1 + u/8) is positive on (0, 1]. We compute that
num+(γ) is a weak positive dominant polynomial of degree 50. ♠

Lemma 1.11 (B4212) f3(m) < f1(m) when m ∈ [9/8,∞).

Proof: Both f1(m) and f3(m) are positive for m positive. We compute

β(t) = f 13
1 (t2)− f 13

3 (t2) =
( 15

7 + 8t2

)13
−
( 2

1 + t13

)2
.
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We want to see that this expression is positive on [9/8,∞). We check that
γ(u) = β(9/8 + u) is a degree 26 polynomial all coefficients positive and a
positive constant term. ♠

Our two lemmas combine to prove our lemma in case m ≥ 1. Suppose
that m < 1. Then y < x. But then 8x + 7y > 7x + 8y ≥ 15. Since
7x + 8y ≥ 15 and 8x + 7y ≥ 15 we see that x + y ≥ 2. But xt + yt ≥ 2 for
all t ≥ 1 by the Convexity Lemma. This completes the proof.

1.6 Proof of Lemma B423

Let F be as in Lemma B423. We define Φ in terms of F just as in Equations
7 and 8, except that we use φ− in place of φ+. Let Ψ = Φ|a=0. Lemma B425
follows from these three facts.

1. The function ∂Φ/∂a is positive on (0, 1]4.

2. The subdivision Sd,1(Ψ) is positive on [0, 1]3.

3. The subdivision Sd,0(Ψ) is positive on [0, 1]3.

The Mathematica file LemmaB4231and2.m calculates that the first of these
functions is weak positive dominant and the second is positive dominant.
This takes care of the first two items. Now we deal with the third.

Given any polynomial Q, we define [Q] to be the sum of the absolute
values of the negative coefficients. If csdt divides Q then Q+ [Q]csdt ≥ 0 on
[0, 3] because all the partial sums in Equation 2 are non-negative and then we
get the claimed result from the same argument as in the proof of the Weak
Positive Dominance lemma.

Let P = Sd,0(Ψ). Our polynomial P has no monomials of the form csdt

with s+ t < 2. Given a monomial µ we define 〈P, µ〉 to be the sum of all the
terms of P which are divisible by µ. We now define

P1 = P −Q− [Q]c2, Q = 〈P0, c
3〉. (10)

P2 = P1 −Q− [Q]d2, Q = 〈P1, d
3〉. (11)

P3 = P2 −Q− [Q]cd, Q = 〈P2, c
2d〉. (12)

P4 = P3 −Q− [Q]cd, Q = 〈P2, cd
2〉. (13)
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By construction P4 ≤ P on [0, 1]3 and moreover

P4(b, c, d) = pA(b)c2 + pB(b)cd+ pC(d)c2. (14)

here PA, PB, PC are polynomials in b alone. Define the discriminant

∆ = 4pApC − p2B. (15)

This is again a polynomial in b alone. The Mathematica file Lemma B4233.m

computes that Sb,0(∆) and Sb,1(∆) are weak positive dominant. Hence ∆ > 0
on (0, 1). Hence P4 cannot vanish on (0, 1)3. Evaluating at a single point,
we see that in fact P4 ≥ 0 on [0, 1]3. But then P ≥ 0 on [0, 1]3 as well.
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