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0.1 A Guide to the Techniques

The Lemmas in this part of the monograph deal with expressions of the form

CY (s) =
E∑
α=0

sα(a2,α2−s/2 + a3,α3−s/2 + a4,α4−s/2). (1)

Here
Y = (a2,0, a3,0, a4,0, a2,1, a3,1, a4,1, ...)

is a rational vector and s ≥ 0. We call expressions in Equation 1 power
combos . Our idea is to bound power combos by polynomials and then use
positive dominance. To facilitate our polynomial approximation, we use in-
terval valued polynomials. All this is explained in this document.

0.2 Positive Dominance

Positive Dominance is a positivity certificate that I discovered myself, though
I wouldn’t be surprised if it is in the literature.

Let G ∈ R[x1, ..., xn] be a multivariable polynomial:

G =
∑
I

cIX
I , XI =

n∏
i=1

xIii . (2)

Given two multi-indices I and J , we write I � J if Ii ≤ Ji for all i. Define

GJ =
∑
I�J

cI , G∞ =
∑
I

cI . (3)

We call G weak positive dominant (WPD) if GJ ≥ 0 for all J and G∞ > 0.
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Lemma 0.1 (Weak Positive Dominance) If G is weak positive dominant
then G > 0 on (0, 1]n.

Proof: Suppose n = 1. Let P (x) = a0 +a1x+ .... Let Ai = a0 + ...+ai. The
proof goes by induction on the degree of P . The case deg(P ) = 0 is obvious.
Let x ∈ (0, 1]. We have

P (x) = a0 + a1x+ x2x
2 + · · ·+ anx

n ≥

x(A1 + a2x+ a3x
2 + · · · anxn−1) = xQ(x) > 0

Here Q(x) is WPD and has degree n− 1.
Now we consider the general case. We write

P = f0 + f1xk + ...+ fmx
m
k , fj ∈ R[x1, ..., xn−1]. (4)

Since P is WBP so are the functions Pj = f0 + ...+ fj. By induction on the
number of variables, Pj > 0 on (0, 1]n−1. But then, when we arbitrarily set
the first n− 1 variables to values in (0, 1), the resulting polynomial in xn is
WPD. By the n = 1 case, this polynomial is positive for all xn ∈ (0, 1]. ♠

Strong Positive Dominance: We call the polynomial P positive dominant
if the inequalities in Equation 3 are all strict. In this case the same argument
as above shows that P > 0 on the closed cube [0, 1]n.

Polynomial Subdivision: Let P ∈ R[x1, ..., xn] as above. Given an in-
dex j and a choice k ∈ {0, 1} we define the new polynomial Q = Sj,p(P ) by
the formula

Q(x1, ..., xn) = P (x1, ..., xi−1, x
∗
i , xi+1, ..., xn), x∗i =

k

2
+
xi
2
. (5)

If Si,k(P ) > 0 on (0, 1]n for k = 0, 1 then we also have P > 0 on (0, 1]n. As
a matter of notation, we might sometimes write, say, Sd,k in place of S4,k if
we are using the variable names (a, b, c, d) = (x1, x2, x3, x4). The operations
Sd,0 and Sd,1 denote “subdivision along the d variable”.

Positive Numerator Selection: If f = f1/f2 is a bounded rational func-
tion on [0, 1]n. written in so that f1, f2 have no common factors, we always
choose f2 so that f2(1, ..., 1) > 0. If we then show, one way or another, that
f1 > 0 on (0, 1]n we can conclude that f2 > 0 on (0, 1]n as well. The point
is that f2 cannot change sign because then f blows up. But then we can
conclude that f > 0 on (0, 1]n. We write num+(f) = f1.

2



0.3 Positive Dominance Subdivision Algorithm

This section depends on the positive dominance criterion from §0.2. Let
F1, ..., Fk be a list of polynomials defined on [0, 1]D and let S ⊂ [0, 1]D.
Consider the following algorithm.

1. Start with a list L of cubes. Initially [0, 1]D is the only cube on the list.

2. If L is empty, then HALT. Otherwise let Q be the last member of L.

3. If any of F1, ..Fk is positive dominant on Q, or if Q ∩ S = ∅, we delete
Q from L and go to Step 2.

4. Otherwise we delete Q from L and append to L the 2D cubes of its
dyadic subdivision. Then we ago to to Step 2.

If this algorithm halts then max(F1, ..., Fk) > 0 on S. We have described
this algorithm in great generality so that we only need to describe it once.
In one application below we will have k = D = 1 and S = [0, h]. In the other
application we will have k = 4 and D = 2 and S = [0, 1]2.

0.4 Interval Polynomials

We define a rational interval to be an interval of the form I = [L,R] where
L,R ∈ Q and L ≤ R. As a notational convention we treat rational constants
as intervals with the same endpoint. Thus C = [C,C]. We say that I traps
r ∈ R if r ∈ I. For example, define

L2 =

[
25469

36744
,
7050

10171

]
, L3 =

[
5225

4756
,
708784

645163

]
, L4 =

[
25469

18372
,
345197

249007

]
. (6)

The interval Lm traps logm for m = 2, 3, 4.
For each operation ∗ ∈ {+,−,×} we define

I1 ∗ I2 = [min(S),max(S)], S = {L1 ∗L2, L1 ∗R2, R1 ∗L2, R2 ∗L2}. (7)

Our operations are such that if Ij traps rj for j = 1, 2 then I1∗I2 traps r1∗r2.
We raise an interval to a positive integer power using iterated multiplication.
These operations are commutative, associative, and distributive.

An inteval polynomial is an expression of the form I0 + I1t+ ...+ Int
n, in

which each coefficient is an interval and t is a variable meant to be taken in
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[0, 1]. Given the rules above, interval polynomials may be added, subtracted
or multiplied, in the obvious way.

Let P be the above interval polynomial. We say that P traps the ordinary
polynomial C0 + C1t + ... + Cnt

n of the same degree degree if Cj ∈ Ij for
all j. We define the min of an interval polynomial to be the polynomial
whose coefficients are the left endpoints of the intervals. We define the max
similarly. If P is an interval polynomial which traps an ordinary polynomial,
then Pmin(t) ≤ P (t) ≤ Pmat(t) for all t ≥ 0. Moreover, if Pj traps the
polynomial Pj for j = 1, 2, then P1 ∗ P2 traps P1 ∗ P2. Here ∗ ∈ {+,−,×}.

0.5 Series Approximation for Power Functions

We take fairly high power series approximations so as to get good estimates.
Let m ∈ {2, 3, 4}. Let 2k be an even integer. Let s ∈ [2k−1, 2k+1]. Taylor’s
Theorem with remainder gives us:

m−s/2 =
11∑
j=0

(−1)j log(m)j

mk2jj!
(s− 2k)j +

Es
12!

(s− 2k)12. (8)

Here Es is the remainder term. For all s ≥ 0 we have

Es =
d12

ds12
m−s/2 =

m−s/2 log(m)12

212
∈ [0, 1]. (9)

With these bounds we can give an interval version of Equation 8:

A±m(t) =
11∑
j=0

(∓1)j(Lm)j

mk2jj!
tj + It12, I = [−1/12!, 1/12!]. (10)

By construction A±m(t) traps m−s/2 when s = 2k ± t and t ∈ [0, 1].
Let CY be the power combo in Equation 1. We define

[Y, 2k, 2k±1] =
( E∑
α=0

(2k± t)α(a2,αA
±
2 (t)+a3,αA

±
3 (t)+a4,αA

±
4 (t))

)
min
. (11)

For each 2k = 0, ..., 16, but excluding the interval [−1, 0], we have

[Y, 2k, 2k ± 1] ≤ CY (2k ± t), ∀t ∈ [0, 1]. (12)

Equation 12 bounds our power combos from below by rational polynomials.
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0.6 Proof of the Lemmas

Here are alternate proofs of the lemmas from this part of the monograph.

Proof of Lemma A221: Let Y be the vector associated to any one of
our coefficients a1(s), a2(s), a3(s), a4(s). We show that [Y, 0, 1] is weak posi-
tive dominant and [Y, 2, 1], [Y, 2, 3], [Y, 4, 3], [Y, 4, 5], [Y, 6, 5] are positive dom-
inant. This shows that aj(s) > 0 for a ∈ (0, 6]. ♠

Proof of Lemma A222: We compute

11ψs(0) =


−88
−128
+216
+6
+32
+11

 ·


2−s/2

3−s/2

4−s/2

s2−s/2

s3−s/2

s4−s/2

 ,
11

s
ψs(4) =


−2112
+1664
+459
+219
288
0

 ·


2−s/2

3−s/2

4−s/2

s2−s/2

s3−s/2

s4−s/2


Both expressions are power combos in the sense of Equation 1. We use the

same methods as in the proof of Lemma A221 to show that these functions
are positive for s ∈ (0, 6]. ♠

Proof of Lemma A231: We use the same method as in Lemma A221. In
this case, all the polynomials are positive dominant. ♠

Proof of Lemma A232: We use the case k = D = 1 of the subdivision
algorithm discussed in §0.3. For each relevant choice of Y we apply the al-
gorithm to the functions [Y, 13, 14], [Y, 14, 15], [Y, 16, 15] respectively on the
sets S = [0, 1], [0, 1], [0, h] where h = 25

512
. In all cases the algorithm halts. ♠

Proof of Lemma A233: We compute

33567ψs(0) =


−88440
−503040
+591480
+4254
+65728
+33567

 ·


2−s/2

3−s/2

4−s/2

s2−s/2

s3−s/2

s4−s/2

 ,
33567

s
ψs(4) =


−48973248
+32866944
+16139871
+4141935
+8107680

0

 ·


2−s/2

3−s/2

4−s/2

s2−s/2

s3−s/2

s4−s/2


The same method as above shows that these combos are positive for

s ∈ [6, 16]. This shows that φs(0), φs(4) > 0 for all s ∈ [6, 16].
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Simple roots: Let ψ′s = dψs/dr. We need to show that ψs and ψ′s do not
have a common root. We define the functions

φ1(s, u) = ψs(r), φ2(s, u) = ψ′s(r), r = 4u. (13)

We make this change so that the u-variable ranges in [0, 1].
For each j = 1, 2 and each interval [6, 7], [8, 7], ...[15, 16] we construct

polynomials φ
j

and φj on [0, 1]2 such that

φj(s
′, u) ≥ φ

j
(s, u), −φj(s′, u) ≥ φj(s, u). (14)

Here s′ is a suitably translated version of s. Thus on the interval [6, 7] we
have s′ = s − 6. On the interval [8, 7] we have s′ = 8 − s. And so on. We
run algorithm from §0.3 on the list {φ

1
, φ1, φ2

, φ2} and we see in all 10 cases
that the algorithm halts. This implies that one of ψs(r) or ψ′s(r) is nonzero
for each r ∈ [0, 4] and s ∈ [6, 16].

The functions: For j = 1, 2 there are vectors Yj,1, ..., Yj,10 such that

φj(s, u) =
10∑
`=0

CYj,`(s)u
`, u ∈ [0, 1]. (15)

For j = 1, 2 and for each interval [2k ± 1, 2k], with 2k = 8, ..., 16, define

φ
j
(t, u) =

10∑
`=0

[Yj,`, 2k, 2k ± 1](t)u`, φj(t, u) =

10∑
`=0

[−Yj,`, 2k, 2k ± 1](t)u`. (16)

These functions have the desired properties. ♠
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