
1 Complex Numbers

1.1 Algebra of Complex Numbers

The number i is declared by law to satisfy the equation

i2 = −1.

A complex number is an expression of the form x + yi, with x and y real
numbers. Complex numbers are added, subtracted, and multiplied as with
polynomials. Examples

(2 + 3i) + (5− 6i) = 7− 3i.

(2 + 3i)− (5− 6i) = −3 + 9i.

(2 + 3i)(5− 6i) = 10 + 15i− 12i− 18i2 = (10 + 18) + i(15− 12) = 28 + 3i.

Division is trickier. Observe that

(2− 3i)(2 + 3i) = 4 + 9 + 6i− 6i = 13.

That means that
13

2 + 3i
= 2− 3i.

Divide both sides by 13:
1

2 + 3i
=

2− 3i

13
.

In general,
1

a+ bi
=

a− bi

a2 + b2
.

Now for division
5− 6i

2 + 3i
= (5− 6i)×

( 1

2 + 3i

)

=

(5− 6i)× 2− 3i

13
=

(5− 6i)(2− 3i)

13
= −8/13− 27/13i.

Problems: Compute A+ B and A−B and AB and A/B for

• A = 2i and B = 1− i.

• A = 1 + 2i and B = 4− 3i

• A = 2− 5i and B = −2 + 7i.
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1.2 Lengths of Complex Numbers

Let z denote a complex number. The quantity z denotes the result of flipping
the sign in front of the i coefficient.

z = x+ yi =⇒ z = x− iy.

The “bar” operation is pretty nice. It is called complex conjugation. Consider
the following example: z = 2 + 3i and w = 4 + 5i. Then z = 2 − 3i and
w = 4− 5i and

zw = (2+3i)(4+ 5i) = −7+22i; (z)(w) = (2− 3i)(4− 5i) = −7− 22i.

This one example shows that

(z)× (w) = zw.

Problem: Prove that this always works. So, take z = a+ bi and w = c+ di
and calculate the whole thing out.

Here’s more notation
|z| =

√
zz.

In general

z = x+ yi =⇒ |z| =
√

(x+ iy)(x− iy) =
√

x2 + y2.

Also
|z|2 = zz = x2 + y2.

This looks like the Pythagorean theorem. If you think of z as the point (x, y)
in the plane, then |z| measures the distance from z to (0, 0).

The number |z| is called the norm of z. The punchline is that

|zw| = |z||w|. (1)

When you multiply two complex numbers together, their norms multiply.
Here is the proof

|zw|2 = (zw)(zw) = z × w × z × w = z × z × w × w = |z|2||w|2.

Take square roots of both sides to get the final result.
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1.3 Unit Complex Numbers

A complex number z is called a unit complex number if |z| = 1. Note that
the product of two unit complex number is again a unit complex number,
because the lengths multiply and 1× 1 = 1. That is, if |z| = |w| = 1 then

|zw| = |z||w| = 1× 1 = 1.

Also,
|1/z| × |z| = |(1/z)× z| = |1| = 1.

So, if z is a unit complex number, then so is 1/z.

Problem: Show that the following numbers are all unit complex numbers:

1 i;
3

5
+

4

5
i;

1√
2
+

1√
2
i

Plot these points in the plane and see what they look like. For instance
i = 0 + 1i would be the point with coordinates (0, 1).

Problem: Suppose that z and w are both unit complex numbers. Prove
that z/w is also a unit complex number.

The neat thing about unit complex numbers is that you can multiply and
divide them and you always get another unit complex number. If you plot
all the unit complex numbers in the plane, you get a circle of radius 1. This
circle is called the unit circle. So, there is a nice way to multiply and divide
points on the unit circle.

Problem: Show that the number

(s2 − 1

s2 + 1

)

+
( 2s

s2 + 1

)

i

is a unit complex number for any real number s. This equation gives you
one way to generate all the unit complex numbers (except, strangely, for 1,
which would require you to take s = ∞.)
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1.4 Sine and Cosine Functions

The sine and cosine functions are examples of trigonometric functions . The
word means roughly “derived from triangles”. These functions are unlike
any you have seen before because they are not explicitly defined in the same
way that polynomials are. There isn’t a “formula” for them in the same way
that there is a formula for a polynomial. Well, it turns out that there are
formulas, but they are more complicated and I won’t go into it now. The
sine and cosine functions (abbreviated sin and cos) are defined geometrically
in terms of unit complex numbers.

z

1

θ
Figure 1: The unit complex number z = cos(θ) + i sin(θ).

Figure 1 shows a complex number that makes an angle θ with the positive
x-axis. The number 1 indicates the length of the edge joining 0 to z.

Depending on θ, the coordinates for z are easy or hard to figure our
exactly. In general, the new functions cos(θ) and sin(θ) are concocted so
that the unit complex number

z = cos(θ) + i sin(θ)

is the unit complex number that makes an angle θ with the positive x-axis.
Depending on θ, it is sometimes possible to write down an explicit answer

to the question what is sin(x) and cos(x) and sometimes not. I’ll give some
examples below that show you how to work out some cases. The number of
cases that can be worked out like this are pretty small, but still the method
will help explain what sin and cos mean.

Here are some examples
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• When θ = 0 we are looking for the unit complex number that makes
an angle of 0 with the x-axis. But the complex number 1 = 1 + 0i has
this property. So cos(0) = 1 and sin(0) = 0.

• When θ = π/2 we are looking for the unit complex number that makes
an angle of π/2 with the x-axis. But π is 180 degrees and π/2 is 90
degrees. So, we want a unit complex number that is perpendicular to
the x-axis. The number i = 0 + 1i has this property. So, cos(π/2) = 0
and sin(π/2) = 1.

• π/4 is 45 degrees. The unit complex number that makes an angle of
π/4 with the x-axis is shown in Figure 2. The triangle drawn is a right
angled isosceles triangle. So, z = L+Li for the same number L. Since
|z| = 1 we get

|z| =
√
zz =

√
L2 + L2 = L

√
2.

So L = 1/
√
2. This means that cos(π/4) = 1/

√
2 and sin(π/4) = 1/

√
2.

π/4

0

z

L

L
1

π/4

Figure 2: The unit complex number z = cos(π/4) + i sin(π/4).

Challenge Problem: Find cos(π/3) and sin(π/3). Hint: Think about the
geometry of the 30− 60− 90 triangle.
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1.5 Angle Addition

Figure 3 shows the powers of A, when

A = cos(π/4) + i sin(π/4) = (1/
√
2) + (1/

√
2)i.

7

1

A
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Figure 3: Ak for k = 1, ..., 7.

Note that
A8 = (A4)(A4) = (−1)(−1) = 1.

Observe also that
(A2)8 = A16 = (A8)2 = 12 = 1.

Similarly
(A3)8 = A24 = (A8)3 = 11 = 1.

And so on. So, the numbers 1, A, ..., A7 are 8 different roots of the equation
x8 = 1. These numbers are called 8th roots of unity .

When you take the nth power of a number, the angle to the x-axis mul-
tiplies by n. That is

(

cos(θ) + i sin(θ)
)n

= cos(nθ) + i sin(nθ). (2)

Why does it work? The more general statement is that

(

(cos(θ1)+i sin(θ1)
)

×
(

(cos(θ2)+i sin(θ2)
)

= cos(θ1+θ2)+i sin(θ1+θ2). (3)
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Equation 3 is called the angle addition formula.

Problem: Explain why Equation 3 implies Equation 2.

Problem: Expand out equation 3 and get a formula for cos(θ1 + θ2) in
terms of cos(θ1) and sin(θ1) and cos(θ2) and sin(θ2).

Proof of the Angle Addition Formula: Let z1 and z2 be the two num-
bers on the left side of Equation 3. Consider the function F (a) = z1 × a.
The input of F is a complex number a and the output is another complex
number, called F (a). Note 3 things:

1. F (0) = 0. So, F doesn’t move the origin at all.

2. For any real number s = s+0i, the number F (s) = sz1 is just a scaled
copy of z1. So, F rotates the x-axis to the line through z1.

3. Suppose we have two other points (i.e. complex numbers) a and b. The
distance from a to b is |a− b|. The distance from F (a) to F (b) is

|F (a)− F (b)| = |az1 − bz1| = |z1(a− b)| = |z1||a− b| = |a− b|.

So, F preserves distances between points.

These three properties force F to be a rotation about 0. Since F rotates
the x-axis to the line through z1, and this line make an angle of θ1 with the
x-axis, we conclude that F is the rotation by θ1.

F rotates z2 to z1z2. Since z2 makes an an angle of θ2 with the x-axis,
the rotated point z1z2 = F (z2) makes an angle of θ1 + θ2 with the x-axis.
That’s the end of the proof.

Well...almost. There is one irritating point. The three properties above
don’t quite say that F is a rotation. The other possibility is that F is
a reflection across some line. Could this really happen? If z1 = 1 then
F (z) = z and F is just a rotation by 0 angles. So, when z1 = 1 this doesn’t
happen. Now imagine continuously changing the choice of z1. The reflection
option can’t suddenly appear out of the blue. That is, the map F can’t
switch from being a rotation to a reflection as z1 moves around. Conclusion:
The reflection option doesn’t happen. That’s the end of the proof.
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1.6 Geometry of Complex Multiplication

Suppose z is any complex number. Let r = |z|. The number z/r is a unit
complex number because

∣

∣

∣

z

r

∣

∣

∣
=

|z|
|r| =

|z|
|z| = 1.

Since z/r is a unit complex number, we can write

z/r = cos(θ) + i sin(θ)

for some angle θ. Multiply through by r:

z = r(cos(θ) + i sin(θ)).

This way of encoding complex numbers tells the distance from the origin and
also the angle that the number makes with the z-axis.

Suppose now that

z1 = r1(cos(θ1) + i sin(θ1)); z2 = r2(cos(θ2) + i sin(θ2)).

Combining equations 1 and 3, we get

z1z2 = r1r2

(

cos(θ1 + θ2) + i sin(θ1 + θ2)
)

.

So, when two complex numbers are multiplied together, their norms multiply
and their “angles” add. That’s the geometry of complex multiplication in a
nutshell.

Problems: zin each case, find a complex number z such that

• z4 = −81.

• z6 = 64.

• z6 = 125i.

Hint: try to find r and θ in the length-angle representation of z.
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