Final Exam Solutions
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The point is that ¢ is an odd function. So, the integral of ¢ from —1 to 1 is
ZEro.

2. The region lies between the graphs of the functions f(x) = x and
g(r) = v/1—22. The boundaries are + = 0 and = v/2/2. So, using
washers, we get that the volume is

W/Oﬁﬂ(a ) a?) dr = 733
3. This is a linear equation with P(z) = —2 and Q(z) = 5sin(z). Compute
I(x) = e %,
This gives the solution as

J1(z)Q(z)dx _ 5 [sin(x)e™* dx

I(x e~

y(x) = = —cos(r) — 2sin(x) + Ce**.

~—

Plugging in y(0) = 0 gives C' = 1. So, the solution is
y(z) = cos(x) — 2sin(z) + e**.
That means y(w/2) = —2 4 €.

4. This is a separable equation. Separate variables to get

dy sin(x)dx
1+y2  J 1+ cos?(z)




The integral on the right is done using the u-sub u = cos(x). This leads to
arctan(y) = — arctan(cos(z)) + C.
The initial conditions give C' = 0. So, the solution
y = tan(— arctan(cos(x)) = — cos(z).
So, y(2) = cos(2).
5. Note that n + 7 < 2n for n large and 3 — 1/n < 2.5 for n large. So,

n+7 2n 2

33-1/n 1§ < n25  pl/s’

The series
2

>
converges by the p-test (for p = 1.5.) So, by the comparison test, the original
series converges.

6. 6 a. Integration by parts (using u = z and dx = e™*) gives
/ xe ¥ dr=1.
0

b. The integrand in the second integral is positive for large x and less than
2ze~". So, by the integral comparison test and part a, the integral converges.
c. The nth term in the series here is less than 2ne™". The series

> 2ne™

converges by the integral test and part a. The original series therefore con-
verges by the comparison test.

7. The ratio test easily gives the radius of convergence as 1/e. At the
endpoint © = 2 — 1/e, the series is alternating and decreasing, and the terms
limit to 0. So, the series converges for z = 2 — 1/e. For z = 2 + 1/e you
have the harmonic series, which diverges. So, the interval of convergence is
2—1/e,2+1/e).



8. Here are the steps for the first series:

1

m:1+t+t2+t3...

S .
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Substituting in 3 for ¢ gives

t? 3., 46 49

T ="+ ++ .

Integrating term by term gives
23 R S 00 3n+4
R R R T R s

Here are the steps for the second series. First imitate the beginning of partial
fractions, to write

Sr—4 3 1 _3+1
224+ —1 1+4+x —1+2¢ 14z 1-22

Using similar steps to part a, we have

3 o0
o3 % 3% — 32° + 32t = ;)(—1)"3)33”.

and

=1+42+42% +8z° + 162" ... = ) 2"a".
1 -2z =5

So, adding these two series, you get

o0

> 2"+ (=1)"3)2"

n=0

for a final answer.

9. Let f(r) = sin*(x). You can compute

f'(x) = 2cos(z) sin(x)
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f"(z) = 2(cos?(z) — sin*(x))
" (x) = —8cos(x) sin(x)
fW(x) = —8(cos?(x) — sin’(z)),

The pattern repeats in the obvious way. The odd terms vanish and we have
f2n(0) — (_1)n22n71.
Plugging this into the basic formula, you get the series

= (et
2 @2n)!

n=2

You can also do this problem by using the half-angle formula and the series
for cos.

10a. Let _
g(t) _ esm(t)

Then we're interested in the first 4 terms of f(¢) = tg(¢). This means we just
need the first 3 terms of g(t). We compute

9(0) = 1.
g (t) = W cos(t), g (0)=1.
g"(t) = e cog?(t) — s sin(t), g"(0) = 1.
So, the series for g(t) starts out
14t +t%/2.

This means that the series for f(t) starts out
t+t2+17/2.

b Let

We want to estimate F'(1). Integrating the beginning of the series for f(t)
term by term gives
F(z) ~ 2?/2 4 2%/3 + 2*/8.
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Taylor’s Remainder Theorem gives

M x 1°
51

|F(1) = (1/2+1/34+1/8)| <

Here M is the maximum value taken by |F®)| on [0,1]. So, F(1) = 23/24
plus some error which is less than M /120. To estimate M you would need to
take the first 5 derivatives of F', which is the same as the first 4 derivatives
of f, and estimate the maximum on the interval [0, 1].



