M1410 Homework Worksheet:

1. Define two points $p, q \in \mathbf{R}^2$ to be equivalent if $p - q \in \mathbf{Z}^2$, the set of integer points. Let $\mathbf{T}^2 = \mathbf{R}^2/\mathbf{Z}^2$. Prove that \mathbf{T}^2 is a smooth manifold by finding coordinate charts to \mathbf{R}^2 such that the overlap functions are translations. \mathbf{T}^2 is the square torus.

2. Prove that there exists a closed 1-form on T^2 which is not exact. This means that $H^1(T^2)$ is nontrivial.

3. Let S^2 denote the 2-sphere, namely the solution to the equation

$$x^2 + y^2 + z^2 = 1$$

in \mathbb{R}^3 . Let $\Delta \subset S^2$ be any round disk. Prove that there is a diffeomorphism from $S^2 - \Delta$ to an open disk in \mathbb{R}^2 .

4. Suppose that ω is a closed 1-form on S^2 . Let Δ be some disk in S^2 which does not contain (0, 0, -1). Prove that there is a unique smooth function f on $S^2 - \Delta$ such that f(0, 0, -1) = 0 and $df = \omega$ on $S^2 - \Delta$. Hint: Problem 3 might be helpful.

5. Suppose that ω is a closed 1-form on S^2 . Prove that there is some function f on all of S^2 such that $df = \omega$. Hint: Problem 4 might be helpful. Conclude that $H^1(S^2)$ is trivial.

6. Suppose that M_1 and M_2 are two compact manifolds and $F: M_1 \to M_2$ is a diffeomorphism. Prove that $H^k(M_1)$ and $H^k(M_2)$ are isomorphic vector spaces for any k. Deduce from this that there is no diffeomorphism from T^2 to S^2 . These are two compact 2-manifolds which are not diffeomorphic.

7. Generalize the argument above to show that the *n*-torus T^n is not diffeomorphic to the *n*-sphere S^n , for all n > 2.

8. (Bonus) Using H^1 , show that the product manifold $(S^2 \times T^2)$ is not diffeomorphic to S^4 .