Some Results from Calculus

Rich Schwartz

January 29, 2015

1 Single Variable Functions

These notes prove some results about functions on \mathbb{R}^n . We'll start with functions of a single variable.

Lemma 1.1 Let $g: \mathbf{R} \to \mathbf{R}$ be a differentiable function with g(0) = 0. Then

$$|g(A)| \le A \times \sup_{x \in [0,A]} |g'(x)|.$$

Proof: This is an immediate consequence of the Fundamental Theorem of Calculus. Here is a proof from scratch. We will establish the more general statement that the inequality

(*)
$$|g(a) - g(b)| \ge (1 + \epsilon)|a - b| \sup_{x \in [a,b]} |g'(x)|$$

cannot hold for any $\epsilon > 0$ on any sub-interval $[a, b] \subset [0, A]$. If (*) holds for some interval I, then by the triangle inequality it also holds for one of the two intervals obtained by cutting I in half. But then (*) holds on a nested sequence $\{I_n\}$ of intervals, shrinking to a point x_0 . This means that

$$\frac{|g(a_n) - g(b_n)|}{|a_n - b_n|} \ge (1 + \epsilon)|g'(x_0)|.$$

Here $I_n = [a_n, b_n]$. This contradicts the differentiability of g at x_0 once n is sufficiently large.

2 Differentiability

A map $f : \mathbf{R}^n \to \mathbf{R}^m$ is called *differentiable* at p if there is some linear map $L : \mathbf{R}^n \to \mathbf{R}^n$ such that

$$\lim_{|h| \to 0} \frac{f(p+h) - f(p) - L(h)}{|h|} = 0.$$
 (1)

Here $h \in \mathbb{R}^n$ is a vector. In this case we write df(p) = L. When f is differentiable at p, the transformation L is the usual matrix of partial derivatives of f, evaluated at p.

Theorem 2.1 Suppose that $f : \mathbb{R}^n \to \mathbb{R}^m$ is a function whose partial derivatives exist and are continuous. Then f is differentiable at all points.

Proof: Considering the coordinate functions separately, it suffices to consider the case m = 1. Translating the domain and range, it suffices to prove this at 0, under the assumption that f(0) = 0. (here $0 \in \mathbb{R}^n$ is shorthand for (0, ..., 0).) Subtracting off a linear functional, we can assume that $\partial_j f(0) = 0$ for all j.

Let v be any unit vector. (Here we are thinking that h = tv in Equation 1.) Let $h = tv = (h_1, ..., h_n)$. Define

 $h_0 = (0, ..., 0),$ $h_1 = (h_1, 0, ..., 0),$ $h_2 = (h_1, h_2, 0, ..., 0), \cdots$

We have some constant ϵ_t so that $|f_{x_j}| < \epsilon_t$ for all j. Moreover, $\epsilon_t \to 0$ as $t \to 0$. Lemma 1.1 gives us

$$|f(h_j) - f(h_{j-1})| \le t \times \epsilon_t.$$

Summing over j, we get

$$|f(h)| \le nt\epsilon_t.$$

Hence

$$\frac{|f(h)|}{|h|} = \frac{|f(tv)|}{t} \le \epsilon_t.$$

This ratio goes to 0 as $t \to 0$. This shows that f is differentiable at 0 and Df(0) is the 0 transformation.

An Example: Choose any smooth 2π -periodic non-constant function $\psi(\theta)$ so that $\psi(k\pi/2) = 0$ for k = 0, 1, 2, 3. Now consider the function (in polar coordinates) $f(r, \theta) = r\psi(\theta)$. Also define f = 0 at the origin. This function is smooth except at the origin, and vanishes along the x-axis and y-axis. Hence f_x and f_y exist everywhere, and vanish at the origin. On the other hand, the restriction of f to some line through the origin is a nonzero linear function, meaning that some directional derivative of f at the origin is nonzero.

3 Another View of Differentiation

Define the dilation $D_r(p) = rp$. Consider the sequence of maps

$$f_r = D_r \circ f \circ D_{1/r}. \tag{2}$$

By construction, $f_r(v)$ converges to the directional (vector) derivative $D_v(f)$. Thus, f is differentiable at 0 if and only if $\{f_r\}$ converges, uniformly on compact subsets, to a linear map M. This linear map is precisely the matrix of partials Df(0).

This observation leads to the following result.

Lemma 3.1 Suppose that $f : \mathbb{R}^n \to \mathbb{R}^n$ is a map with f(0) = 0. Suppose that f is invertible on the unit ball U, and V = f(U) is an open set, and f is differentiable at 0. Then f^{-1} is differentiable at 0 and $D(f^{-1})(0) = (Df(0))^{-1}$.

Proof: Replacing f by Af for some linear map A, it suffices to consider the case when Df(0) is the identity. In this case, the sequence $\{f_n\}$ converges uniformly on compact subsets to the identity map. Consider the functions

$$f_n^{-1} = D_n \circ f^{-1} \circ D_n.$$

Since V is an open set, the map f^{-1} is defined on the disk of radius ϵ about 0. Hence f_n^{-1} is defined on the disk of radius $n\epsilon$. In particular, these maps are eventually defined on any given compact subset K. Moreover, these maps converge to the identity. But then f^{-1} is differentiable at 0 and $D(f^{-1})$ is the identity.

4 A Technical Result

In this section we assemble another ingredient for the Inverse Function Theorem. We call f nice if f(0) = 0 and

$$\|df(p) - I\| < 10^{-100}.$$
(3)

for all vectors v with $||v|| < 10^{100}$. Here I is the identity matrix and the norm can be taken to mean the maximum absolute value of a matrix entry of df(p) - I. One property a nice function has is that

$$\|(p-q) - (f(p) - f(q))\| < \frac{\|p-q\|}{2}.$$
(4)

for all p, q having norm less than 10^{100} . To prove this, we consider the segment γ connecting p to q. Then $f(\gamma)$ is a curve whose tangent vector is everywhere almost equal to p - q.

Lemma 4.1 Let f be a nice function. Let B_r denote the ball of radius r centered at the origin. Then $B_1 \subset f(B_{10})$.

Proof: If this is false, then there is some $P \in B_1 - f(B_{10})$. Note that f maps every point on the boundary of B_{10} at least, say, 8 units away from p. For this reason, we can find some $Q \in P_{10}$ such that

$$P - f(Q) = \inf_{q \in B_{10}} P - f(q) > 0.$$

But now consider the new point

$$\overline{Q} = Q + (P - f(Q)).$$

We compute

$$P - f(\overline{Q}) = (\overline{Q} - Q) - (f(\overline{Q}) - f(Q)).$$

From Equation 4 we get

$$||P - f(\overline{Q})|| < ||Q - \overline{Q}||/2 = ||P - f(Q)||/2$$

This is a contradiction, because $f(\overline{Q})$ is closer to P than is f(Q) and again $\overline{Q} \in B_{10}$.

5 Inverse Function Theorem

Say that $f : \mathbf{R}^n \to \mathbf{R}^n$ is C^{∞} if all partial derivatives of all orders exist for f. Say that f is nonsingular at p if df(p) is invertible. Given open sets $U, V \subset \mathbf{R}^n$ suppose f(U) = V. Say that f is a diffeomorphism from U to Vif f is a bijection and both f and f^{-1} are C^{∞} and nonsingular at all points of their domains.

Theorem 5.1 (Inverse Function Theorem) Suppose that f is C^{∞} , and nonsingular at p. Then there are open sets U and V with $p \in U$ and $f(p) \in V$ such that the map $f : U \to V$ is a diffeomorphism.

Let ||q|| denote the norm of a point q. We can replace f by a composition of the form AfB, where A and B are invertible affine maps, to arrange that:

- p = 0 and f(p) = 0.
- For all q with $||q|| < 10^{100}$, we have $||Df_q I|| < 10^{-100}$.

Here I is the identity matrix.

Now let U be the unit disk and let V = f(U). We will verify all the desired properties through a series of lemmas.

Lemma 5.2 f is injective on U.

Proof: for any $q_1, q_2 \in U$, let γ be the line segment connecting connecting q_1 to q_2 . Consider the curve $f(\gamma)$. By construction, the tangents fo $f(\gamma)$ are nearly parallel equal to γ . Hence γ cannot be a loop, and $f(q_1) \neq f(q_2)$.

We also note that the argument above gives

$$||f(q_2) - f(q_1)|| > ||q_1 - q_2||/2.$$
(5)

Lemma 5.3 V is open.

Proof: Choose some $v_0 \in V$ and let $u_0 \in U$ be such that $f(u_0) = v_0$. Composing f by translations and dilations, we can switch to the case when

• $u_0 = v_0 = 0.$

- f is nice.
- $B_{10} \subset U$.
- $B_1 \subset V$.

Then we can apply Lemma 4.1. \blacklozenge

Now we know that V open. Consider $f^{-1}: V \to U$. Equation 5 tells us immediately that f^{-1} is continuous. Lemma 3.1, together with symmetry, now tells us that f^{-1} is differentiable and $D(f^{-1}) = (Df)^{-1}$ at each point. Now we have the magic equation

$$Df^{-1}(q) = df \circ f^{-1}(q).$$
 (6)

If we know that f^{-1} is k times differentiable, then by the chain rule Df^{-1} is k times differentiable. But then f^{-1} is k+1 times differentiable. By induction f^{-1} is C^{∞} .