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The purpose of these notes is to define what is meant by a manifold , and
then to give some examples.

1 Topological Spaces

If you haven’t seen topological spaces yet, just skip this section.
The space underlying a manifold is traditionally taken to be a second-

countable Hausdorff topological space. To say that a space X is second

countable is to say that there is a countable collection of open subsets of X
such that every open subset of X is a union of members from the countable
collection – i.e., X has a countable basis . To say that X is Hausdorff is to
say that, for every two distinct points x, y ∈ X, there are disjoint open sets
Ux and Uy such that x ∈ Ux and y ∈ Uy.

That is all I’m going to say about topological spaces. Below I’m going to
define manifolds in terms of metric spaces. The definition I give is equivalent
to the definition that is given in terms of topological spaces, even though at
first glance it looks different.

2 Metric Spaces

A metric space is a set X together with a function d : X×X → R such that

• d(x, y) ≥ 0 for all x, y ∈ X, with equality if and only if x = y.

• d(x, y) = d(y, x) for all x, y ∈ X.

• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
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d is called the distance function on X.

Example 0: It almost goes without saying, but I’ll say explicitly that any
subset of a metric space is automatically a metric space, with the same met-
ric. This fact is frequently and implicitly used.

Example 1: The classic example of a metric space is a subset X ⊂ R
n

equipped with the distance function given by d(x, y) = ‖x− y‖, here ‖ · ‖ is
the Euclidean norm.

Example 2: This example is unrelated to the rest of the material in the
notes, but I like it. Choose a prime p and on Z define d(x, y) = p−k, where k
is the largest integer such that pk divides x− y. This is known as the p-adic
metric on Z. Geometrically, Z looks like a dense subset of points in a Cantor
set when it is equipped with the p-adic metric.

From now on, X denotes a metric space, and d the metric on X.

Balls: Given x ∈ X and some r > 0, we define

Br(x) = {y ∈ X| d(x, y) < r}. (1)

The set Br(x) is known as the open ball of radius r about x.

Open Sets: A subset U ⊂ X is open if, for every x ∈ U , there is some
r > 0 such that Br(x) ⊂ U .

Continuity: Given to metric spaces X and Y , a map f : X → Y is called
continuous if, for all open V ⊂ Y the inverse image U = f−1(V ) is open in
X. This definition is equivalent to the usual ǫ − δ definition of continuity.
From our definition, it is clear that the composition of continuous functions
is continuous. If f : X → Y and g : Y → Z are both continuous, then so is
g ◦ f : X → Z.

Homeomorphisms: A map f : X → Y is a homeomorphism if f is a
bijection and both f and f−1 are continuous. So, in particular, a homeomor-
phism from X and Y induces a bijection between the open subsets of X and
the open subsets of Y . To test your understanding, prove that the open ball
in R

n is homeomorphic to R
n but the closed ball in R

n is not.
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Compactness: A covering of X is a collection of open sets whose union
equals X. A subcover of a covering is some subset of the covering which
is, itself, a covering. A subset of X is compact if every covering of X has a
subcovering with finitely many elements. It is a classic theorem that a subset
of Rn is compact if and only if it is closed and bounded.

σ-Compactness X is called σ-compact if X is a countable union of compact
subsets. For instance, any closed subset of Rn is σ-compact, but only the
bounded closed subsets are compact.

3 Topological Manifolds

Coordinate Charts: Let M be a metric space. A coordinate chart in M is
an open set U ⊂ M and a homeomorphism

h : Rk → U. (2)

We write this as (U, h). This coordinate chart is said to contain p if p ∈ U .
Here k could depend on the point – e.g. when M is the union of a line and
a plane – but we’re going to be interested in the case when k is the same for
all points.

Basic Definition: A topological k-manifold is a σ-compact metric space
M such that every point of M is contained in some coordinate chart.

Examples: Here are some examples of topological manifolds.

• R
n itself.

• Sn, the n-dimensional sphere.

• The surface of any polyhedron.

• The Koch snowflake.

• The square torus - i.e. the square with sides identified.

The simplest example of a σ-compact metric space which is not a topological
manifold is the union of the coordinate axes in R

2.
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Overlap Functions: Suppose that M is a topological manifold. Suppose
that (U1, h1) and (U2, h2) are two coordinate charts in M . Suppose that these
charts overlap. That is, the set V = U1 ∩ U2 is nonempty. Then we have a
map

h−1
2 ◦ h1 : h

−1
1 (V ) → h−1

2 (V ). (3)

This map is a homeomorphism because it is the composition of homeomor-
phism. The function h−1

2 ◦ h1 is called an overlap function.

4 Smooth Manifolds

Compatible Charts: Let M be a topological manifold. Two coordinate
charts U1, U2 ∈ M are smoothly compatible if the overlap function defined by
these charts is not just a homeomorphism, but actually smooth.

Atlases: A smooth atlas A on M is a system of coordinate charts which
are all compatible with each other. We insist that every point of M is con-
tained in at least one chart of A. The atlas A is called maximal if there is
no additional coordinate chart, not in A, which is compatible with all the
coordinate charts in A. Zorn’s Lemma guarantees that every smooth atlas
on M is contained in a maximal smooth atlas.

Main Definition: A smooth manifold is a topological manifold equipped
with a maximal smooth atlas.

Example 1: Let F : R
n → R

m be a smooth map and let q ∈ R
m be

some point. We call q a regular value, if for every p ∈ F−1(q), the differential
dF (p) is surjective. In this situation, the Implicit Function Theorem gives a
coordinate chart about p, and this coordinate chart is smooth in the usual
sense. So, when q is a regular value, F−1(q) is a smooth manifold of dimen-
sion n−m assuming that it is nonempty.

Example 2: Take the unit cube in R
n and identify opposite sides in the

most direct possible way. Call the resulting space X. If you want to make
X into a metric space, define d(x, y) to be the length of the shortest path
joining x to y, where these paths are allowed to go through the identified
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sides. You can find coordinate charts from X into R
n which are local isome-

tries i.e. distance preserving when restricted to small enough open sets. (Try
this for n = 2 first.) The overlap functions are again local isometries and
hence smooth. So, the unit cube in R

n with its sides identified is naturally
a smooth n-manifold. It is known as the square n-torus .

5 Maps between Smooth Manifolds

Main Definition: Suppose that M1 and M2 are smooth manifolds. A map
f : M1 → M2 is smooth if all compositions of the form

h−1
2 ◦ f ◦ h1 (4)

are smooth, where h1 is a homeomorphism associated to a chart in M1 and
h2 is a homeomorphism associated to a chart in M2. What makes this a
good definition is that all the overlap functions are smooth. So, to verify
the smoothness of f , you don’t have to examine all the uncountably many
coordinate charts in the two maximal atlases. You just to verify it for some
pair of sub-atlases.

Diffeomorphisms: A map f : M1 → M2 is a diffeomorphism if f is a
bijection and both f and f−1 are smooth. It is easy to verify that the com-
position of smooth diffeomorphisms is again a diffeomorphism. In particular,
the set of diffeomorphisms from M to itself is a group! It is written Diff(M).

Exercise: Here is an interesting but somewhat difficult problem. Suppose
that M is any smooth manifold and p1, ..., pn ∈ M are some finite set of
points. Let π be some permutation of these points. Prove that there is a
diffeomorphism of M which agrees with π on these points. Try it first for R2,
and then for homeomorphisms of topological manifolds. Getting the map to
be smooth, on a smooth manifold, is additional work.

6 Riemann Surfaces

The same basic framework allows you to define other kinds of structures on
topological manifolds. I’ll just give one example, because it is especially im-
portant.
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Complex Analytic Maps: Let U ⊂ C be an open set. A map f : U → C

is called complex analytic if it is continuously differentiable, and

df(p) =
[

A(p) B(p)
−B(p) A(p)

]

(5)

for all p ∈ U . The real valued functions A(p) and B(p) vary continuously
with p. Geometrically, df(p) is a similarity. When Equation 5 is written
out in terms of the matrix of partial derivatives, it is known as the Cauchy-

Riemann equations .

Alternate Formulation: It is an amazing fact that a complex analytic
map is always smooth, and equal to a convergent power series

f(z) =
∞
∑

i=0

cj(z − z0)
j, cj ∈ C (6)

in a neighborhood of each point z0 ∈ U . You could take this as an alternate
definition of what it means for a map to be complex analytic.

Main Definition: A Riemann Surface is a 2-dimensional smooth manifold
such that all the overlap functions defined by its atlas are complex analytic.

6


