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I found the material in §12.4 really hard to read. I re-wrote the material
in a way which seems easier to get through. One thing about my notes is
that I switch the roles of V and W , because we’ve all had years of experience
thinking about linear transformations from V into W and not the reverse.
(This is just a psychological preference, of course.)

1 Pulling Back a Tensor

Let V andW be vector spaces and letM : V → W be a linear transformation.
The map M gives a linear transformation

M∗ : T r(W ) → T r(V ). (1)

Note that V and W have switched. Let T : W r → R be a tensor of type r.
We have the tensor M∗T : V r → R defined by the equation

M∗(T )(V1, ..., Vr) = T (M(V1), ...,M(Vr)). (2)

In other words, we map V1, ..., Vr into W and then apply the tensor to them.
Everything involved is linear, so M∗ is a linear map. The goal of these notes
is to explain the action of M∗.

Let {v1, ..., vm} is a basis for V and {w1, ..., wn} is a basis for W . We have
the formula

M(vi) =
n∑

k=1

Mikwk. (3)

The goal is to express the map M∗ in terms of these coefficients.
There are three cases, the first of which is just a warm-up: the linear

functional case, the general case, and the alternating case.
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2 Linear Functional Case

We are interested in M∗ : W ∗ → V ∗. We have the dual bases {v∗1, ..., v
∗

m}
and {w∗

1, ..., w
∗

n}. Here v∗i (vj) = 1 if i = j and 0 otherwise. Same goes for
w∗

i . The matrix for M∗ is just the transpose of the matrix for M .
To figure out the matrix for M∗, we just have to see that M∗(w∗

j ) does
to vi. We compute

M∗(w∗

j )(vi) =

w∗

j (M(vi)) =

w∗

j (
∑

k=1n
(Mikwk)) =

n∑

k=1

w∗

j (Mikwk) =

Mij .

In short,
M∗(w∗

j )(vi) = Mij . (4)

But that means that

M∗(w∗

j ) =
m∑

k=1

Mijv
∗

i (5)

This is why the matrix for M∗ is just the transpose of Mij .

3 General Case

Let’s introduce the multi-index notation. Let I = (i1, ..., ir) be an r-tuple of
numbers. We write

v∗I = v∗i1 ⊗ ...⊗ v∗ir . (6)

We write the same thing for w∗

I . Also, we write

vI = (vi1 , ..., vir).

This is just an r-tuple of vectors. We have v∗I (vJ) = 1 if I = J and 0
otherwise.

We want to figure out what M∗(w∗

J) does to vI . This gives the component
M∗

IJ of the giant matrix representing M∗.
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We compute
M∗(wJ)(vI) =

wJ(M(vI)) =

wJ(M(vi1), ...,M(vir)) =

w∗

j1
⊗ ...w∗

jr
(M(vi1), ...,M(vir)) =

w∗

j1
(M(vi1))× ...× w∗

jr
(M(vir)) =

Mi1j1 ...Mirjr .

So, the bottom line is that

MIJ = Mi1,j1 ...Mirjr . (7)

4 Alternating Case

The basis elements for ∧r(V ∗) are given by

[v∗I ] = A(v∗I ) = vi1 ∧ ... ∧ vir .

Sinilarly for ∧r(W ∗). The tensor M∗([wJ ]
∗) is some linear combination of

the various [vI ]
∗. We want to find the coefficients. We have

[w∗

J ] =
∑

σ

ǫ(σ)w∗

σJ . (8)

Here σ is a permutation, and ǫ(σ) is the sign of σ, and σJ denotes the multi-
index you get when you permute the entries of J according to the action of
σ.

Now let’s take I to be an increasing multi-index: i1 < ... < ir. From the
previous case, and linearity, we have

M∗([w∗

J ])(vI) =
∑

σ

ǫ(σ)MI,σJ =
∑

σ

ǫ(σ)Mi1σ(j1), ...,Mir ,σ(jr)). (9)

This last expression is just the determinant of the r × r matrix you get by
taking I rows of M and the J columns.

5 Crucial Special Case

Suppose that V = W and r = n = dim(V ). Then the transformation law
tells us that M∗ is just multiplication by det(M). In particular, M∗ is the
identity map if det(M) = 1.
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