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1 The Result

Let M be a smooth manifold. This means that

• M is a metric space.

• M is a countable union of compact subsets.

• M is locally homeomorphic to R
n. These local homeomorphisms are

the coordinate charts.

• M has a maximal covering by coordinate charts, such that all overlap
functions are smooth.

Let {Θα} be an open cover of M . The goal of these notes is to prove that
M has a partition of unity subordinate to {Θα}. This means that there is a
countable collection {fi} of smooth functions on M such that:

• fi(p) ∈ [0, 1] for all p ∈ M .

• The support of fi is a compact subset of some Θα from the cover.

• For any compact subset K ⊂ M , we have fi = 0 on K except for
finitely many indices i.

•
∑

fi(p) = 1 for all p ∈ M .

The support of fi is the closure of the set p ∈ M such that fi(p) > 0.
These notes will assume that you already know how to construct bump

functions in R
n. Note: I deliberately picked a weird letter for the cover, so

that it doesn’t interfere with the rest of the construction.
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2 The Compact Case

As a warm-up, let’s consider the case when M is compact. For every p ∈ M
there is some open set Vp such that

• p ∈ Vp.

• Vp ⊂ Θα for some Θα from our cover.

• Vp is contained in a coordinate chart.

Using the fact that we are entirely inside a coordinate chart, we can construct
a bump function f : M → [0, 1] such that f(p) > 0 and the support of f is
contained in a compact subset of Vp. Let Wp ⊂ Vp denote the set of points
where f > 0. Then Wp is an open set which contains p. Call Wp a nice open

set .
The set {Wp| p ∈ M} is an open covering of M . Since M is compact, we

can find a finite number W1, ...,Wm of nice open sets such that M =
⋃
Wi.

Let g1, ..., gm be the functions associated to these open sets. By construction,
gi > 0 on Wi. This means that the sum

∑
gi is positive on M . Define

fi =
gi

∑
gi
. (1)

Then f1, ..., fm make the desired partition of unity.
The rest of the notes deal with the case when M is not compact.

3 Fattening Compact Sets

We need two technical lemmas.

Lemma 3.1 Let p ∈ M be any point. For all sufficiently small ǫ, the ball of

radius ǫ has compact closure in M .

Proof: There is some neighborhood U of p which is homeomorphic to R
n.

Let φ : U → R
n be a homeomorphism. Choose some closed ball B ⊂ R

n

which contains φ(p). Consider φ−1(B). This is a compact subset of M , and
it contains the open set U ′ = φ−1(interior(B)). Any sufficiently small open ǫ
ball ∆ about p will be contained in U ′ and hence will have closure contained
in the compact set φ−1(B). A closed subset of a compact set is compact.
Hence, the closure of ∆ is compact. This is what we wanted to prove. ♠
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Lemma 3.2 If X ⊂ M is compact, then there exists some compact subset

Y such that X is contained in the interior of Y .

Proof: For each p ∈ X, there is some ǫ ball ∆p whose closure in M is com-
pact. The union of such balls covers X. Since X is compact, we can take a
finite subcover. That is, X ⊂ ∆1∪...∪∆m. Let Y be the union of the closures
of these balls. Since Y is a finite union of compact sets, Y is compact. The
interior of Y contains the union of these open balls, and hence contains X. ♠

4 Cleaning up the Compact Sets

Lemma 4.1 There exists a countable collection {Ki} of compact sets such

that Ki is contained in the interior of Ki+1 for all i, and M =
⋃
Ki.

Proof: We know already that M =
⋃
Ki, where Ki is compact and the

union is countable. Replacing Km by K1 ∪ ... ∪ Km, it suffices to consider
the case when K1 ⊂ K2 ⊂ K3....

Suppose we know already that Ki is contained in the interior of Ki+1

for i = 0, ...,m. By the preceding lemma, we can replace Km+2 by a larger
compact set Lm+2 which contains Km+2 in its interior. Now we redefine
Km+3 = Lm+2 ∪Km+3 and Km+4 = Lm+2 ∪Km+3 ∪Km+4, etc. The new col-
lection of compact sets has Ki ⊂ Ki+1 for all i = 0, ...,m+ 1. By induction,
we can get this property for all i. ♠

Lemma 4.2 We can write M =
⋃
Li, where Li is compact for all i, and

Li ∩ Lj = ∅ if j < i− 1.

Proof: We know that M =
⋃
Ki, where each Ki is compact, and Ki is

contained in the interior of Ki+1 for all i. Define

Li = Ki − interior(Ki−1). (2)

Note that Li is disjoint from Kj for j < i − 1. Hence Li is disjoint from Lj

for j < i − 1. By construction Li is a compact set minus an open set. In
other words, Li is the intersection of a compact set and a closed set. Hence
Li is compact. Also, M =

⋃
Li. ♠
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5 The Main Construction

We keep the notation from the previous section. Consider Li. Each p ∈ Li

has an open metric ball U such that

• U is disjoint from Lj for all j < i− 1. This uses the fact that there is
a minimum positive distance between Ui and Uj for all j < i− 1.

• U is contained in some Θα from our cover.

• U is contained in a coordinate chart.

As in the compact case, we can construct a bump function f such that
f(p) > 0 and the support of f is contained in a compact subset of U . Let
W ⊂ U denote the set where f > 0. Call W a nice set. Since Li is compact,
we can cover Li by finitely many nice sets, say Wi1, ...,Wimi

. (The number
depends on i.)

Now we consider the covering

W11, ...,W1i1 ,W21, ...,W2i2 , ...

We rename these sets X1, X2, X3, ... and let g1, g2, g3 be the associated func-
tions. These functions have the following properties.

• For every p ∈ M , there is some gi such that gi > 0. This comes from
the fact that p ∈ Lj for some j, and then p is contained in some nice
set on our list.

• Any compact set only intersects finitely many Xi. The point is that
any compact set is contained in the union of finitely many Li.

• The support of each gi is contained in some Θα from the original cover.
This comes from the fact that the support of gi is the closure of a nice
set.

Now we define fi = gi/
∑

gj, as in the compact case. The sum is locally
finite at each point. This gives us the partition of unity.

4


