
The Cauchy-Binet Theorem

Rich Schwartz

February 9, 2016

The Cauchy-Binet theorem is one of the steps in the proof of the Matrix
Tree Theorem. Here I’ll give a proof.

Let A be an n×N matrix and let B be an N × n matrix. Here n < N .
The matrix AB is an n× n matrix. Given any subset S ⊂ {1, ..., N} having
n-elements, form the two n× n matrices AS and BS, obtained by just using
the rows (or columns) indexed by the set S. Define

f(A,B) = det(AB), g(A,B) =
∑

S

det(AS) det(BS). (1)

The sum ranges over all choices of S. The Cauchy-Binet theorem is that
f(A,B) = g(A,B) for all choices of matrices.

Think of A and B each as n-tuples of vectors in R
N . We get these vectors

by listing out the rows of A and the columns of B. So, we can write

f(A,B) = f(A1, ..., An, B1, ..., Bn), (2)

and likewise for g.
The idea of the proof is to check that the values of f and g change in the

same way when the list A1, ..., An and the list B1, ..., Bn are changed just one
vector at a time. All the properties we list come from well-known properties
of the dot product and the determinant.

• If Ai is replaced by λAi then f(A,B) is replaced by λf(A,B).

• If Bi is replaced by λBi then f(A,B) is replaced by λf(A,B).

• If Ai is replaced by λAi then g(A,B) is replaced by λg(A,B).

• If Bi is replaced by λBi then g(A,B) is replaced by λg(A,B).
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Now consider the analogous operation of addition. Let A′ denote the list
obtained from A by changing the vector Ai to A′

i. Likewise define A
′′ and B′

and B′′. We only change things in the one position. Suppose Ai = A′

i + A′′

i

and Bi = B′

i + B′′

i . Then

• f(A,B) = f(A′, B) + f(A′′, B).

• f(A,B) = f(A,B′) + f(A,B′′).

• g(A,B) = g(A′, B) + g(A′′, B).

• g(A,B) = g(A,B′) + g(A,B′′).

In view of the fact that f and g transform exactly the same way under
all the operations above, it suffices to consider the case when all the vectors
are amongst the standard basis vectors. If Ai = Aj for some pair of indices,
then det(AS) = 0 for all S and also det(AB) = 0 because AB has a repeated
row. The same goes if Bi = Bj for some pair of indices. So, we can assume
that no two vectors of A are the same and no two vectors of B are the same.
Call the associated matrices special .

In short, it suffices to prove the Cauchy-Binet theorem when A and B

are special matrices. So, A and B are both matrices with n ones and the
rest zeros. The rows of A are linearly independent and the columns of B are
linearly independent. In this situation, there are unique sets SA and SB of n
elements such that det(ASA

) = 1 and det(BSB
) = 1. For all other sets we get

zero. So g(A,B) = 1 if SA = SB and otherwise g(A,B) = 0. When SA = SB,
the matrix AB is the identity so f(A,B) = 1. Otherwise, AB has at most
n−1 nonzero entries. Hence f(A,B) = 0. So, in all cases f(A,B) = g(A,B).

This completes the proof.
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