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1 Main Result

A polygonal loop is a finite union of line segments S1, ..., Sn in the plane such
that

• Si and Si+1 share a common vertex for all i.

• Si and Sj are disjoint if i 6= j ± 1.

The indices are taken cyclically, so that n + 1 is the same as 1. In other
words, a polygonal loop is an embedded cycle, in which all the edges are
straight lines. A polygonal path is defined in the same way, except that S1

and Sn are also disjoint.
An open subset U ⊂ R

2 is path connected if every two points p, q ∈ U

can be joined by a polygonal path. Here is the main result.

Theorem 1.1 (Polygonal Jordan Curve) If P is any polygonal loop then

R
2 − P consists of exactly two path connected sets U1 and U2. That is, U1

and U2 are path connected, and no point in U1 can be joined to a point in U2

by a path that does not cross P .

The Jordan Curve Theorem is certainly true for triangles. The proof in
the general cases uses this special case.

2 Intersections of Polygonal Loops

A polygonal path or loop P cleanly crosses a polygonal path or loop Q if
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1. No vertex of P lies in Q.

2. No vertex of Q lies in P .

3. P ∩Q consists of finitely many points.

Here is the main result in this section.

Lemma 2.1 If P and P are two polygonal loops which interesect cleanly,

then the number of intersection points is even.

Proof: Let’s first prove the result when P is a triangle. Since P satisifies
the Jordan Curve Theorem, we can say that P has an inside and an outside.
So, as we travel around Q, each intersection point represents a switch from
outside to inside, or vice versa. Since we end up at the same place we started,
there are an even number of switches.

The general case goes by induction in the number of sides of P . By
considering all the lines emanating from a vertex of P we can find an edge
e which joins two vertices of P and does not otherwise intersect P . This is
shown in Figure 1.

Figure 1: Dividing P into P1 and P2.

e divides P into two smaller polygonal loops, P1 and P2. Each of these
loops uses some consecutive sides of P and then has e as the last side. The
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intersection P1 ∩ P2 is exactly e. By rotating Q slightly, so as to leave the
number of intersection points unchanged, we can arrange that all of P, P1, P2

have a clean intersection with Q. Let N,N1, N2, Ne denote the number of
times that Q intersects P1, P2, P, e respectively. By induction, N1 and N2 are
even. But also

N = (N1 −Ne) + (N2 −Ne) = N1 +N2 − 2e.

Therefore N is also even. ♠

3 The Main Argument

Now I’ll give the argument I gave in class. For each point p ∈ R
2−P consider

any ray emanating from p that intersects P cleanly and let Ep denote the
parity of the number of intersection points with this ray.

Lemma 3.1 Ep is well defined.

Proof: Let R1 and R2 be two rays emanating from P . By choosing points
on R1 and R2 that are very far away from P and joining them by a line
segment, we can find a triangle Q that only interesects P on R1 ∪ R2. But
P ∩ Q has an even number of intersection points. Hence, the parity of the
number of intersection points of P with R1 ∪R2 is even. ♠

Lemma 3.2 If Ep 6= Eq, then p and q cannot be joined by a polygonal loop

in R
2 − P .

Proof: Suppose this is false. Then we can make a polygonal loop which
intersects P an odd number of times. To make the loop, we connect p to q

in R
2 − P , then adjoin rays emanating from p and q way outside of P , then

connect points on these rays. This is a contradiction. ♠

Lemma 3.3 If Ep = Eq then p and q can be joined by a polygonal loop in

R
2 − P .
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Proof: Consider a polygonal path Q which joins p to q and intersects P

cleanly in the fewest possible number of points. The number must be even,
by the same argument as above. Let a be the first intersection point of Q∩P

we reach as we go from p to q along Q. We make a new path as follows. Just
before reaching a we veer off and follow P around until we come to another
intersection point of P ∩Q. This detour must hit another intersection point
b in P ∩Q because otherwise we would have a loop that intersects P an odd
number of times. Taking the detour, we get a new polygonal path which
joins p to q and intersects P fewer times. This is a contradiction. ♠

Figure 2: Decreasing the number of intersection points

The theorem follows from the lemmas above.
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