A Criterion for Hausdorff Quotients

Rich Schwartz

October 28, 2015

The purpose of these notes is to give more details about the result I mentioned in class about quotients being Hausdorff. These notes are more loquacious than the previous version.

1 Local Compactness

Recall that a topological space X is *Hausdorff* if for all distinct $p, q \in X$ there are open sets U_p and U_q such that $p \in U_p$ and $q \in U_q$ and $U_p \cap U_q = \emptyset$. The way this is commonly said is that we can separate points by open sets in a Hausdorff space.

Assume that X is Hausdorff. The space X is *locally compact* if for each $p \in X$ there are sets U_p and K_p such that $p \in U_p \subset K_p$, and U_p is open and K_p is compact. Any compact Hausdorff space is, of course, locally compact. But, there are lots of non-compact examples as well. For instance, Euclidean space \mathbf{R}^n is locally compact. More generally, any closed subset of \mathbf{R}^n is locally compact.

Here is an example of a space that is not locally compact. First consider Z (the integers) with the discrete topology. Then let X be the cone on Z. You can picture X as a "prong", with an infinite number of edges sticking out of a common point. There are plenty of compact sets containing the prong point, but you can't arrange for one of them to also contain an open set. That is, X is not locally compact. Note that any other point of X does satisfy the criterion, because any other point of X has a neighborhood which is homeomorphic to R.

As another example, equip Q (the rationals) with the subspace topology. Q is not locally compact.

2 Proper Discontinuity

Suppose that X is a compact Hausdorff space. Let G be group action on X. Technically this means that there is a continuous map $F: G \times X \to X$ such that

$$F(g, F(h, x)) = F(gh, x).$$

This way of writing things is annoying. The more usual way is to introduce the notation

$$g(x) = F(g, z).$$

In this way, we think of g acting on X as a homeomorphism for each $g \in X$. The compatibility condition is then

$$g(h(x)) = (gh)(x).$$

The group action is *properly discontinuous* if, for each compact $K \subset X$, the set

$$\{g \in G | g(K) \cap K \neq \emptyset\}$$

is finite.

Here are some examples:

- The usual action of Z on R is properly continuous. Here n(x) = x + n.
- More generally, the usual action of \mathbf{Z}^n on \mathbf{R}^n is properly discontinuous.
- Let

$$T = \begin{bmatrix} 2 & 0\\ 0 & 1/2 \end{bmatrix}$$

Let $\boldsymbol{G} = \boldsymbol{Z}$ and let $X = \boldsymbol{R}^2 - \{(0,0)\}$. The action is given by

$$n(v) = T^n(v).$$

This action is not properly discontinuous: If K is the unit circle centered at the origin, then $T^n(K)$ intersects K for all n.

• The action of $SL_2(\mathbf{Z})$ on the upper half plane discussed in class is properly discontinuous. Here $SL_2(\mathbf{Z})$, the group of integer 2 × 2 matrices of determinant 1, acts by linear fractional transformations.

3 The Main Result

Here is the main result.

Theorem 3.1 Suppose that X is Hausdorff and locally compact, and G acts properly discontinuously on X. Then X/G is Hausdorff.

4 Characterizing Open Sets

The rest of the notes are devoted to the proof.

Let $\pi : X \to X/G$ denote the quotient map. Say that a *G*-invariant open set is an open set *U* such that g(U) = U for all $g \in G$. If $V \subset X/G$ is an open set, then $\pi^{-1}(V)$ is *G*-invariant. Conversely, if $U \subset X$ is open and *G*-invariant, then $\pi(U)$ is open. The point of this last claim is that $U = \pi^{-1}(\pi(U))$ when *U* is *G*-invariant. So, in short, *G*-invariant open sets in *X* correspond to open sets in X/G.

To prove that X/G is Hausdorff, we have to be able to separate any two distinct points $[x], [y] \in X/G$ by open sets. Let $x, y \in X$ be any points in the equivalence classes of [x] and [y] respectively. Separating [x] and [y] by open sets in X/G is the same as separating x and y by G-invariant open sets in X. The next result shows that we can get away with a little less.

Lemma 4.1 Suppose we can find an open set V and a G-invariant open set W such that $V \cap W = \emptyset$, and $x \in V$ and $y \in W$. Then [x] and [y] are separated by open sets in X/G.

Proof: Since V is disjoint from W and each $g \in G$ gives a homeomorphism of X preserving W, we see that g(V) is disjoint from g(W) = W. But then V' = G(V) is disjoint from W. But then V' and W are disjoint G-invariant open sets containing x and y respectively.

The lemma tells us that it suffices to put any open set around x and then find a disjoint *G*-invariant open set around y. The local compactness lets us find "small" open sets around x and y. The proper discontinuity lets us arrange that the small open set around x is disjoint from all but finitely many images in the *G*-orbit of the small open set around *Y*. Then, using the Hausdorff property of *X*, we can shrink our small open sets so as to fix up the finitely many overlaps left over from the initial construction. The next section carries out the details.

5 The Details

Since X is locally compact, there are sets U_x, K_x and U_y, K_y where

- $x \in U_x \subset K_x$
- $y \in U_y \subset K_y$
- U_x, U_y are open
- K_x, K_y are compact.

From the proper discontinuity property there are only finitely many $g \in G$ such that

$$K_x \cap g(K_y) \neq \emptyset.$$

(You get this by applying the basic definition to $K = K_x \cup K_y$.) Call these exceptional elements $g_1, ..., g_n$.

As this point we just have finitely many overlaps to worry about. Now we explain the final shrinking argument.

Lemma 5.1 For each j = 1, ..., n we can find open sets V_j and W_j such that $x \in V_j \subset U_x$ and $y \in W_j \subset U_y$ and $V_j \cap g_j(W_j) = \emptyset$.

Proof: Fix j. Since X is Hausdorff, we can find open sets V'_j and W'_j so that $x \in V'_j$ and $g_j(y) \in W'_j$ and $V'_j \cap W'_j = \emptyset$. We set $V_j = V'_j \cap U_x$ and

$$W_j = g_j^{-1}(W_j') \cap U_y$$

These sets do the trick. \blacklozenge

Finally, define

$$V = \bigcap_{j=1}^{n} V_j, \qquad W = \bigcap_{j=1}^{n} W_j.$$

Note that $x \in V$ and $y \in W$. By construction V_j is disjoint from $g_j(W)$ for j = 1, ..., n. Moreover, for any other $g \in G$ we have

$$V \cap g(W) \subset K_x \cap g(K_y) = \emptyset.$$

Therefore V is disjoint from the G-invariant set G(W). This completes the proof of the theorem.