
Math 1410: Classification of Surfaces: The purpose of these notes is to
discuss the classification of compact topological surfaces. These notes cover
what I said in class, and add some details. Also, I’m going to state the final
result differently than I did in class.

Triangulated Surfaces: Say that a triangulated surface is the identification
space obtained from a finite disjoint union triangles by gluing their edges in
pairs. Each edge of each triangle is labeled and given a direction. The same
label is used exactly twice. The gluing has the property that the two points
which are t units of the way across like-labeled edges are identified. Points
in the interiors of the triangles are only equivalent to themselves; points in
the interiors of edges are equivalent in pairs; otherwise many vertices could
be equivalent to each other.

It is a general theorem that any compact topological surface is homeo-
morphic to a triangulated surface. This is quite a bit of work to prove. If you
want to see a proof, look at the 1950 edition of the Annals of Mathematics
journal. These notes will just deal with triangulated surfaces.

Polygon Gluing Diagrams: A related kind of surface has the following
description. Start with any (solid) polygon, with an even number of edges.
Then identify the edges in pairs just as for triangulated surfaces. This is
called a polygon gluing diagram. Any solid polygon is homeomorphic to a
solid regular polygon, so you could just work with polygon gluing diagrams
based on regular polygons. This description makes these kinds of surfaces
very combinatorial: You just fix a number 2n of sides, then pair up the edges,
then choose directions for each edge.

Lemma 0.1 Any connected triangulated surface is homeomorphic to a sur-

face built from a polygon gluing diagram.

Proof: Say that a partial polygon diagram is a solid polygon, together with
a pairing of some (but possibly not all) of its edges. The diagram has a
free edge if not all the edges are paired. If the diagram has no free edges, it
defines a surface.

Let Σ be the triangulated surface. Order the N triangles in Σ. The first
triangle T1 has 3 edges, and at most 2 are glued together. So, P1 = T1 itself
forms a psrtial polygon diagram whose identifications come from Σ/ Suppose
that Pk is a partial polygon gluing diagram made from k of the triangles. If
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k < N then Pk must have a free edge. Otherwise Pk defines a compact
surface and none of the other triangles can attach to Pk. This contradicts
the connectivity of Σ.

So, Pk has a free edge. This free edge is paired with some edge that
belongs to a triangle T not on the list of those comprising Pk. Let Pk+1 be
the larger polygon obtained by attaching T to Pk along the relevant edge,
and according to the pairings for Σ. Adjust the shape of T if necessary to
guarantee that Pk+1 is still embedded. If some other edge of T is paired with
some edge of Pk, then add this to the data for the diagram. Otherwise, do
nothing. By construction Pk+1 is a partial gluing diagram that just uses the
pairings from Σ.

By induction, the partial gluing diagram PN exists. This diagram cannot
have a free edge, because every edge of every triangle of Σ is paired with
some other edge. So, the gluing diagram of PN is complete: the edges are
all paired. The pairings for PN are the same as some of those for Σ, and
the remaining pairings from Σ correspond to edges in the interior of PN .
Therefore, the identification space obtained by gluing together the edges on
the boundary of PN is homeomorphic to Σ. ♠

Complexity: Suppose now that Σ is a polygon gluing diagram. We’re going
to prove that Σ is either the sphere, or homeomorphic to a connected sum of
tori, Klein bottles, and projective planes. Define the complexity of Σ to be
the minimum number of sides in and polygon gluind diagram that produces
a surface homeomorphic to Σ. For instance, the torus, sphere, Klein bottle,
and projective plane all have complexity 4. The proof is going to be induc-
tion on the complexity. So, suppose that Σ is a surface with the smallest
complexity for which we have not yet proved the result.

Crossing Pairs: Let Σ be a surface as above and let P be a minimal
complexity gluing diagram for Σ. Say that a crossing pair for Σ is a collec-
tion of 4 edges A1, A2.B1, B2 such that A1 ∪A2 separates B1 ∪B2 on ∂P . In
other words, the edges are interlaced. Here we mean that A1, A2 are paired
and B1, B2 are paired.

Suppose Σ has a crossing pair. We can move the gluing diagram by a
homeomorphism so that A1, A2, B1, B2 are contained in the 4 sides of a square
and all of P is contained in the solid square. This is shown in Part 1 of Figure
1.
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Figure 1: The induction step

Think of the square as the union of P and some yellow pieces that will go
along as guides for the construction. Pair the sides of the square according to
the labels on A1, A2, B1, B2. Now glue the square together. This will produce
either a torus, a Klein bottle, or a projective plane. Figure 1 shows the torus
case. Part 2 of Figure 1 shows the torus T together with the images of the
yellow pieces.

Next, delete the yellow pieces and recall the pairings on the sides of the
resulting polygonal hole P ′ in T . This is shown in Part 3 of Figure 1. Finally,
imagine that T is made of rubber, and you pull P ′ away from T . In part 4
of Figure 1, the polygon P ′ is joined back to T by a long tube that flares out
at the end. From this picture, we recognize that Σ is the connected sum of
a torus with a simpler surface Σ′ whose gluing diagram is given by the solid
polygon whose boundary is P ′.

In short, Σ is the connected sum of a torus with a surface Σ′ of lower
complexity. Hence, y induction, the main claim holds for Σ. Even though we
just dealt with the torus case, the same argument would work in the Klein
bottle or projective plane case: We would see that Σ is the connected sum
of Σ′ with either a Klein bottle or a projective plane.

Adjacent Pairs, Part 1: Let Σ and P be as above. If P has no cross-
ing pair, then P has a pair of adjacent edges that are glued together. The

3



most elementary way to see this is to consider the pair of edges A1, A2 that
are paired together and as close together as possible. If these edges are not
adjacent, then there is some edge B1 between A1 and A2. But B1 must be
paired with an edge B2 between A1 and A2 and on the same side, because
there are no crossing pairs. But then (B1, B2) are closer together and we
have a contradiction.

P

P'

Figure 2: Oppositely oriented adjacent edges.

So, let A1 and A2 be adjacent edges that are glued together. Suppose
first that the directions on A1 and A2 are opposite, as shown in Figure 2.
Then we can re-draw P in such a way that A1 and A2 are nearly identified.
Then we make the gluing we see that the resulting surface is homeomorphic
to the surface based on the gluing diagram P ′ that comes from omitting A1

and A2. In this case, we have a contradiction. The polygon P could not have
been a minimal gluing diagram because P ′ has 2 fewer edges and gives the
same surface.

Before we move on to the next section I want to explain something more
about Figure 2. I have shaded a neighborhood of the two edges to illustrate
the fact that cutting out this neighborhood just amounts to cutting out a
disk from the final surface.
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Adjacent Pairs, part 2: Suppose that the gluing diagram P has two ad-
jacent pairs that have the same direction. Let T be the triangle made from
these two edges and from the third edge that joins the non-adjacent vertices
of these two edges. The triangle T is shown in red in Figure 3. The identi-
fication space T/∼ is a Mobius band. This is most easily seen by re-cutting
T along a segment that bisects T

P
T

Figure 3: Same-oriented adjacent edges.

The identification space (P − T )/ ∼, which is the yellow part of Figure 3
modulo the equivalence relation, is homeomorphic to the result of cutting a
disk out of a lower complexity surface. The best way to see this is to let T ′

be the modification of T obtained by switching the directions of one of the
edges. Then (P − T ) ∪ T ′ is the same kind of gluing diagram we considered
in the previous section, and it produces a surface Σ′ of lower complexity than
Σ. But then we recognize (P − T )/ ∼ as the result of cutting a disk out of
Σ′. This is why we had the discussion at the end of the last section.

The total space P/∼ is therefore obtained by cutting out a disk from Σ′

and gluing a Mobius band along the boundary of that disk. Since the pro-
jective plane minus a disk is homeomorphic to a Mobius band, we see that Σ
is the connected sum of Σ′ and a Mobius band. Therefore, by induction, Σ
is either a sphere, or the connected sum of tori, Klein bottles, and projective
planes.
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Endgame: Now we know that any triangulated surface is either the sphere
or homeomorphic to the connected sum of tori, Klein bottles, and projective
planes. We’re going to simplify the picture in this section.

First of all, the Klein bottle is the connected sum of two projective planes.
So, we can eliminate any Klein bottles from the description: Any triangulated
surface is homeomorphic to either the sphere or a connected sum of tori and
projective planes.

Second of all, the connected sum of a torus and a projective plane is
homeomorphic to the connected sum of three projective planes. So, if a
surface is homeomorphic to a connected sum of both tori and projective
planes, then it is also homeomorphic to the connected sum of only projective
planes.

In summary, any triangulated surface is homeomorphic to one of three
kinds of surfaces:

• The sphere.

• A connected sum of tori.

• A connected sum of projective planes.

Now I’ll sketch the proof that no two of these surfaces is homeomorphic to
each other. This shows that each triangulated surface is homeomorphic to
exactly one surface on the list.

The sphere is the only simply connected example on the list. So, it is not
homeomorphic to any of the others. The torus surfaces do not contain any
embedded Mobius bands whereas the projective plane surfaces all do. So, no
surface of the second kind of homeomorphic to a surface of the third kind.

If we remove one point from the connected sum of n tori, the resulting
space is has the same homotopy type as a bouquet of 2n circles. (This is most
easily seen by noting that the connected sum of n tori has a description as
the surface obtained by gluing opposite sides of a 4n-gon.) The fundamental
group of this space is the free group on 2n generators, which is not isomorphic
to the free group on 2m generators when m 6= n. Hence two different surfaces
of the same type are never homeomorphic. The same argument works almost
word for word for surfaces of the third type.
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