
Math 1410: Classic Examples of Manifolds:

The purpose of these notes is to explain some classic examples of mani-
folds. This won’t be on the exam! All these examples are compact Hausdorff
spaces which are topological manifolds. The examples also have a number of
additional structures associated to them which I am not going to discuss in
these notes. For instance, they are usually considered as smooth manifolds
(whatever that means).

A General Principle: Let X be a topological space and let ∼ be an equiv-
alence on X. Call a subset A ⊂ X full (with respect to the equivalence
relation) if every equivalence class intersects A. We can treat A as a topo-
logical space by giving it the subspace topology, and then we can consider
A/ ∼.

Lemma 0.1 If A is compact and A/ ∼ is Hausdorff Then X/ ∼ and A/ ∼
are homeomorphic.

Proof: The basic idea is to shoehorn this result into the one thing we
know: A continuous bijection from a compact space to a Hausdorff space is
a homeomorphism.

Let φ : X → X/ ∼ be the quotient map. The identity map ι : A → X
respects the equivalence relation and gives a map from A/ ∼ to X/ ∼. The
map I is surjective because A intersects every equivalence class. The map I
is injective by definition of the equivalence relation on A: Two elements in
A are equivalent if and only if they are equivalent in X. So, I is a bijection.

Now we show that I is continuous. The map I is induced by the map

φι : A → X/ ∼ .

So, we just have to show that φι (the composition) is continuous. Choose
some open U ∈ X/ ∼. By definition φ−1(U) is open in X. But

(φι)−1(U) = φ−1(U) ∩ A,

which is open by definition of the subspace topology. Hence I is continuous.
Since A is compact in X and φ : X → X/ ∼ is continuous, φ(A) is com-

pact. But φ(A) = X/ ∼ because every equivalence class intersects A. Hence
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X/ ∼ is compact. Now we know that I is a continuous bijection from a com-
pact space to a Hausdorff space. That means that I is a homeomorphism. ♠

Real Projective Space: RP
n is defined to be X/ ∼ where X is the space

of nonzero vectors in R
n+1 and v ∼ w if and only if v and w are multiples

of each other. Equivalently, v and w are equivalent if and only if they are
contained in the same line through the origin. This RP

n is the space of lines
through the origin in R

n+1.
To understand our example, we use the general principle above. Let A

be the unit sphere in R
n+1. The set A is full because every nonzero vector is

equivalent to a unit vector. Also, A is compact by the Heine-Borel theorem:
it is closed and bounded. Finally the relation on A is just that v ∼ ±v.
The open sets in A/ ∼ are quotients of open sets U of A which are invariant
under the antipodal map. That is, v ∈ U if and only if −v ∈ U . If [v] and
[w] are two points in A/ ∼ then we can place ±u and ±v inside small and
disjoint symmetric open sets. Each symmetric set is just a union of two small
balls centered at the relevant points. Hence A/ ∼ is Hausdorff. The general
principle tells us that RP

n is homeomorphic to A/ ∼, which is described in
words as the sphere modulo the antipodal map.

As a third definition, let B ⊂ A denote the upper hemisphere of A,
including the equator. The space B is again compact, and a similar argument
to the one above shows that B/ ∼ is Hausdorff. Hence A/ ∼ and B/ ∼ are
homeomorphic. The equivalence relation on B is as follows: Each point in
the interior of B is its own equivalence class and the equivalence classes on
the equator, ∂B, look like ±v for unit vectors v. We can identify the upper
hemisphere of A with the unit ball in R

n. So, we can equally well describe
RP

n is the solid n-ball with antipodal points in its boundary identified. This
last definition reveals that RP

n is the union of a space homeomorphic to R
n

andRP
n−1. Abusing notation somewhat, we can writeRP

n = R
n∪RP

n−1.
Here is another way to think about this union. R

n consists of those
equivalence classes of vectors (x1, ..., xn+1) with xn+1 6= 0. Any equivalence
class like this has a unique representative of the form (x1, ..., xn, 1), which
we can identify with the point (x1, ..., xn) ∈ R

n. What is left over is equiva-
lence classes of vectors of the form (x1, ..., xn, 0), and this is a copy of RP

n−1.

Cell Structure of Projective Space: The relation above can be iterated,
to give

RP
n = R

n ∪R
n−1 ∪ ... ∪R

0,
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the last space being a single point. You can think of this in terms of coor-
dinates: Continuing the analysis from the previous section, Rn−1 is the set
of equivalence classes of the form (x1, ..., xn−1, 1, 0) and R

n−2 is the set of
equivalence classes of vectors of the form (x1, ..., xn−2, 1, 0, 0), and so on.

Here is another way to think about this decomposition. We can build the
circle S1 by attaching two 1-balls to a pair of points. We think of S1 as the
equator of S2 and we get S2 by attaching two disks to the circle. We think
of these two disks as the hemispheres. And so on. This procedure leads to
a description of Sn as a cell-complex with 2 cells in each dimension. The
whole process is invariant with respect to the antipodal map, and so we get
a cell decomposision of RP

n in which there is one cell in each dimension,
up to and including n. This is another way to think about the equation above.

Projective Transformation: A projective transformation ofRP
n is a map

induced from an invertible linear transformation of Rn+1. Such linear trans-
formations are continuous and respect the equivalence relations. So, they
induce continuous maps on RP

n. The same applies to the inverse linear
transformation, so these maps are homeomorphisms.

If you know about groups, you’ll appreciate the statement that the set
of projective transformations of RP

n forms a group. This group is denoted
PGLn(R). It is an example of what is called a Lie group. In particular, it
is a topological group on the sense discussed in §4.3 in the book. I’ll discuss
this later on in lecture.

A line in RP
n is the set of equivalence classes of vectors all contained in

a single 2-plane through the origin. Put another way, a line is the image of a
2-plane through the origin under the quotient map. Given the definition of
linear maps, projective transformations map lines to lines. Again, they are
continuous homeomorphisms of RP

n which map lines to lines.
Consider a special case: n = 2. In this case,RP

2 = R
2∪RP

1. Most lines
of RP

2 intersect R2 in an ordinary line, but there is one line, namely RP
1,

which is disjoint from R
2. So, to figure out what projective transformations

to do RP
2 you can look a homeomorphisms which map lines to lines in the

ordinary sense, except that sometimes points in the plane get mapped to
points in RP

1 “at infinity” and sometimes points “at infinity” get mapped
into the plane.

The space of invertible linear transformations of R3 is a 9-dimensional
manifold, because there are 9 = 3 × 3 entries of a matrix. Two matrices
which are scalar multiples of each have the same action on RP

2, and this
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makes PGL3(R) an 8-dimensional space. Call 4 points in RP
2 a quad if no

three lie in the same line.
The basic fact is that, given any two (ordered) quads, there is a unique

projective transformation which maps the one to the other. Here is a sketch
of the proof: Note that there is a unique linear transformation that maps any
basis to any other. This means that there is always a projective transforma-
tion that maps any triple of points (not on a line) to the equivalence classes
of the standard basis vectors. Then, fooling around with diagonal matrices,
which all preserve these standard equivalence classes, you can arrange for the
4th point to do what you want, and in a unique way.

As a fun drawing exercise, let ABCD be the unit square in R
2 and

sketch the action of the projective transformation that maps A,B,C,D to
A,B,D,C. In other words, two points are fixed and two are switched. This
is the exercise we started in class.

Complex Projective Space: CP
n is defined to be the space X/ ∼ where

X = C
n+1−{0} and two vectors are equivalent if and only if they are complex

multiples of each other.
Another way to understand this space is to let A be the unit sphere in

C
n. Then A is a full compact subset of X. After some effort, you can

verify that A/ ∼ is Hausdorff, and so the general principle says that X/ ∼ is
homeomorphic to A/ ∼. In particular, CP

n is compact and Hausdorff. Two
unit vectors in A are equivalent if and only if they are unit complex multiples
of each other. In other words, CP

n is obtained from the 2n-dimensional
sphere by crushing certain great circles to points.

As a special case, consider CP
1. There is a map from C

2 into C ∪ ∞
given by the map

f(z1, z2) = z1/z2.

This map respects the equivalence relations and induces a continuous bijec-
tion from the compact CP

1 to C ∪ ∞, the 1-point compactification of C,
which we know to be homeomorphic to S2. Since CP

1 is compact and S2

is Hausdorff, we see that CP
1 is homeomorphic to S2. This probably looks

like the world’s strangest description of the sphere.
In general, we have the same decomposition

CP
n = C

n ∪CP
n−1 = C

n ∪C
n−1 ∪ ... ∪C

0.

So, CP
n is the union of Euclidean spaces of all even dimension up to and

including 2n. In particular, CP
2 is homeomorphic to a union of C2 ≈ R

4

4



and C ≈ R
2 and a point. This is pretty hard to visualize, but after some

practice you can get used to working with it.
Complex projective space is extremely important an algebraic geometry.

Stiefel Manifolds: The space V (k, n) is defined to be the space of all
orthonormal k-frames in R

n. (That is, all vectors are unit vectors, and ev-
ery two are perpendicular.) We can make this space into a metric space by
declaring that the distance between frames (v1, ..., vk) and (w1, ..., wk) is the
maximum angle between some vi and some wi. The symmetry condition is
easy to check, and the triangle inequality is not too bad. This turns V (k, n)
into a metric space and hence a Hausdorff topological space.

Here’s a rough sketch that V (k, n) is a topological manifold of dimension
(n−1)+(n−2)+ ...+(n−k). For instance V (2, 4) has dimension 3+2 = 5.
Starting with a frame (v1, ..., vk) how do we move around? We first wiggle
v1 within a little open ball on the unit sphere Sn−1. Once we settle on a
choice for v′1, we can wiggle v2 around within a little open ball in the copy of
Sn−2 that is perpendicular to v′1. Once v′1 and v′2 are chosen, we can wiggle
v3 around in a little open ball on the copy of Sn−3 that is perpendicular to
both v′1 and v′2. And so on. In all cases, we are taking our choices from little
open balls of dimension n − 1, n − 2, ..., n − k. This reveals the dimension
to be as advertised, and a small neighborhood of the original frame to be a
kind of product of open balls of various dimensions. Such a product is again
homeomorphic to a Euclidean ball.

Since V (k, n) is metric space, it is automatically Hausdorff. Here is an
argument for compactness. We can identify V (k, n) as a certain subset of
(Rn)k just by listing out the vectors. The subset we get is bounded because
all vectors have unit length. It is also closed because any limit of a sequence
of frames is again a frame. Informally, you would say that orthogonality
is a closed condition. By the Heine-Borel theorem, this copy of V (k, n) is
compact.

All in all V (k, n) is a compact Hausforff manifold whose dimension is
(n− 1) + ...+ (n− k).

Grassmann Manifolds: The space G(k, n) is defined as the space of k-
planes through the origin in R

n. There is a natural map from V (k, n) to
G(k, n): You just map a k-frame to the k-plane that is spans. This map
is surjective, so we topologize G(k, n) with the quotient topology. There
are ways to directly make G(k, n) into a metric space, in terms of various
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“angles” between k-planes. I’ll leave that to you. It is fun to think about.
The space G(1, n) is just RP

n−1. The spaces G(k, n) and G(n − k, n)
have canonical homeomorphisms between then: Just map a k-plane to its
perpendicular complement, which is an (n−k) plane. So, the spaceG(n−1, n)
is also a copy of RP

n−1. The first new space of G(2, 4).
There are various ways to see that G(2, 4) is homeomorphic to S2×S2, the

product of 2 two-dimensional spheres, but I don’t know a totally elementary
way to do it. One way involves identifying R

4 with the set of quaternions
and then using properties of quaternionic multiplication. I won’t get into
this in these notes.

In general, the map from V (k, n) to G(k, n) is not injective because many
orthonormal k-frames span the same k-plane. In fact, the space of orthonor-
mal k-frames in the same k-plane has dimension (k − 1) + (k − 2) + ... This
is a very rough sketch of the reason that G(k, n) has dimension

(n− 1) + ...+ (n− k)− (k − 1)− (k − 2)...

For instance G(2, 4) has dimension 3+ 2− 1 = 4. You might enjoy trying to
figure out the dimension of G(k, n) in your own way.
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