
Math 1410: The Polygonal Jordan Curve Theorem: The purpose
of these notes is to prove the polygonal Jordan Curve Theorem, which says
that the complement of an embedded polygonal loop in the plane has exactly
two connected components. (Since the complement is open, the components
coincide with path components.)

Line Segments: Polygonal loops and paths are built from line segments,
so let me say a few words about these first. Two line segments A and B

abut if they share an endpoint and otherwise are disjoint. In other words,
A ∩ B is an endpoint of both A and B. These segments are transverse if
they are either disjoint or if they have a single intersection point which is in
the interior of both A and B. If A and B abut, they are not transverse. If
they are transverse, they do not abut. It is also possible that A and B are
not transverse and do not abut.

Paths and Loops: A polygonal path is a finite union A1, ..., An of line
segments such that Ai and Ai+1 abut for all i = 1, ..., n− 1 and otherwise Ai

and Aj are transverse. The path is embedded if Ai and Aj are disjoint when
|j − i| > 1. The polygonal path above is a loop if the first endpoint of A1

coincides with the last endpoint of An. Such a loop can either be embedded
or not. Figure 1 shows two polygonal loops, the first of which is embedded.

Figure 1: Two polygonal loops

When the loop or path is not embedded, it is useful to mark the vertices
of the loop – i.e., the endpoints of the intervals – because from the picture
alone it might not be entirely clear how we have decomposed the path/loop
into segments. In the embedded case, there is nothing to worry about, un-
less two consecutive segments are parallel. We call a point of a polygonal
loop ordinary if it lies on a unique line segment in the loop. Aside from the
vertices, the polygonal loop at right in Figure 3 has three points which are
not ordinary.
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Transverse Intersections: Let A and B be two polygonal loops. We say
that A and B intersect transversely if each segment comprising A is trans-
verse to each segment comprising B, and if all the intersection points are
ordinary. Figure 2 shows a transverse intersection between two polygonal
loops.

Figure 2: Two transversely intersecting loops.

Say that an ǫ-perturbation of A is a polygonal loop A′, consisting of the
same number of segments, such that the endpoints of each segment of A are
within ǫ of the endpoints of the corresponding segment of A′. In other words,
we just jiggle the vertices a bit to get A′ from A. Here is a useful property
of transverse intersection points.

Lemma 0.1 Suppose A and B have a transverse intersection. If A′ is an

ǫ-perturbation of A and ǫ is sufficiently small then A′ and B also have a

transverse intersection and the number of intersection points of A∩B is the

same as the number of intersection points of A′ ∩ B.

Proof: The basic underlying principle we use is that the intersection point
of two non-parallel segments varies continuously with the segments.

Let Ai and Bj be two segments of A and B respectively and let A′

i be the
corresponding segment of A′. If Ai and Bj are disjoint then there is some
minimum distance between them. If A′

i is sufficently close to Ai then A′

i
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and Bj are also disjoint. On the other hand, if Ai and Bj intersect then the
intersection point lies in the interior of both, and the two segments are not
parallel. If ǫ is sufficiently small, A′

i and Bj also have a single intersection
point that lies in the interior of both. This uses the continuity principle
mentioned at the beginning of the proof.

There is some minimum distance between any point of A ∩ B and a
non-ordinary point of A or B. This means that A′ ∩ B will not contain
any non-ordinary points as long as A′ is sufficiently close to A. This uses
the continuity principle once again. Now we know that A′ and B have a
transverse intersection.

Since A and B have a transverse intersection, the number of intersection
points is just the total number of indices (i, j) where Ai intersects Bj. But
the same goes for A′ and B. Hence A∩B and A′ ∩B have the same number
of intersection points. ♠

Remark: We stated the above definitions and results in terms of loops,
but all the same definitions, results, and proofs work with paths in place of
loops. I mention this because, below, I’ll sometimes use the path case of the
transversality result.

Lemma 0.2 If A and B are polygonal loops with a transverse intersection,

then A ∩B has an even number of intersection points.

Proof: First consider the case when A is a triangle. In this case, R2 − A

consists of two path components, the region bounded by the triangle and
the region outside the triangle. We’ll call these the sides of A. The number
of times each segment of B intersects A is even if both endpoints of B are
on the same side of A and odd if the endpoints lie in different sides. The
transversality condition guarantees that the each vertex lies on one side or
the other. Since the initial and final endpoint coincide, they lie on the same
side of B. But this shows that there must be an even number of times when
the endpoints of a segment of A lie on different sides of B. Hence the total
number of intersection points is even.

Now consider the general case. The proof goes by induction on the num-
ber of sides of A. Let A∗ be the polygonal loop obtained by replacing the
first two edges of A with a single segment joining the endpoints of A1 ∪ A2.
Call this new segment A12. Figure 3 shows A and A∗.
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Figure 3: A and A∗ and T .

Taking an ǫ-perturbation of A if necessary, we can arrange that A∗ is
also a polygonal loop, and both A and A∗ have transverse intersection with
B. (We perturb because we’re worried about the stupid possibility that the
side T12 is not transverse to some of the other edges of A.) Let T be the
triangle whose sides are T1, T2, T12. Letting N(A,B) be the number of points
of A ∩B, etc., we have

N(A,B) = N(A∗, B) +N(T,B)− 2N(A12, B).

The sum N(A∗, B) is even by induction, because A∗ has one fewer side than
A. The term N(T,B) is even by the special triangle case. The third term is
obviously even. So N(A,B) is even because it is the sum of even numbers. ♠

The Sides of a Loop: Let A be a polygonal loop. We choose some point X
which lies much farther from the origin than any point of A. For each point
p ∈ R

2 − A we define N(p) to be the parity, even or odd, of the number
of times polygonal loop joining p to X intersects A. We always take our
polygonal loops to be transverse to A, so that the intersection number is
finite and the parity makes sense.

Lemma 0.3 N(p) is well-defined independent of polygonal loop chosen.

Proof: Let B1 and B2 be two polygonal paths joining p to X. Since both
B1 and B2 are transverse to A, the number of intersection points does not
change if we replace B1 and B2 by small perturbations. We perturb, if neces-
sary, so that B = B1∪B2 is a polygonal loop that has transverse intersection
with A. Since B intersects A an even number of times, the number of times
B1 intersects A has the same parity as the number of times B2 intersects A. ♠
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Lemma 0.4 Suppose that p1 and p2 are two points of R2 − A. Let B0 be

a polygonal path joining p1 to p2 which has transverse intersection with A.

Then the parity of A ∩ B0 is the same as the parity of N(p1) +N(p2).

Proof: We denote the number of intersections by N(∗, ∗). We can join pj
to X by a polygonal path Bj. Perturbing our paths slightly, we can arrange
that B0 ∪B1 ∪B2 is a polygonal loop that intersects A transversely. By the
parity result above,

N(A,B0) +N(A,B1) +N(A,B2) ≡ N(A,B0) +N(p1) +N(p2) ≡ 0 mod 2.

This proves what we want. ♠

Corollary 0.5 Suppose that N(p1) 6= N(p2). Then p1 and p2 lie in different

components of R2 − A.

Proof: If p1 and p2 lie in the same component, then we can join them by a
polygonal path that intersects A zero times. This contradicts the previous
result. ♠

The above corollary proves half of the polygonal Jordan Curve Theorem.
If A is any polygonal loop, embedded or not, then R

2 − A has at least two
components. If remains to show, in the embedded, case that R

2 − A has
exactly two components. We’ll start with a technical construction and then
give the main proof.

The Shadow Path: Suppose now that A is an embedded loop. We say
that an ǫ-shadow is another polygonal path A′ which which is disjoint from
A and is less than ǫ from A in the Hausdorff metric. This means that each
point of A is within ǫ of A′ and vice versa.

Lemma 0.6 Let ǫ > 0 be given. There exists some δ > 0 such that any point

p that lies within δ of A lies on an ǫ-shadow of A.

Proof: Let A1, ..., An be the sides of A. The shadow is going to have sides
A′

1, ..., A
′

n, with Ai and A′

i parallel for all i. Let L1, ..., Ln be the lines through
the vertices of A which bisect the angles at each of the vertices. This is shown
in Figure 4.
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Figure 4: The loop in red and the shadow in blue.

Suppose without loss of generality that p is closest to A1. Let A′

1 be
the line segment which is parallel to A1, contains p, and has endpoints on
L1 and L2. Then let A′

2 be the line segment that has endpoints on L2 and
L3, is parallel to A2, and has a common endpoint with A′

1. Now define
A′

3, A
′

4, .... The perpendicular distance between Ai and A′

i is the same as
the perpendicular distance between Ai+1 and A′

i+1 by symmetry, because the
reflection in the line Li+1 swaps the line containing Ai with the line containing
Ai+1 and also swaps the line containing Ai+1 with the line containing A′

i+1.
(Phil pointed this out in class.)

If the final endpoint of A′

n lies on the opposite side of L1 from the endpoint
of A′

1, then we can join these points togetether by the relevant segment of
L1, and this produces a polygonal loop that intersects A exactly once. This
contradicts the parity result. Hence, the final endpoint of A′

n lies on the
same side of L1 as does the initial point of A′

1. Given our result about the
perpendicular distances, we see that the final endpoint of A′

n coincides with
the initial endpoint of A′

1. So, A
′ is a cloed loop.

A′

i is disjoint from Ai because these two segments are parallel. Ai′ is
disjoint from Ai+1 because these segments are separated by Li. The same
argument works for Ai−1. For the remaining segments, we just have to pick
δ so small that A′

i is closer to Ai than the minimum distance between Ai and
Aj for |i− j| > 1. This guarantees that A′

i is disjoint from A. We do this for
all indices i, and get A′ disjoint from A. ♠
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The End of the Proof: Suppose again that A is an embedded polygonal
loop. Let p1, p2 ∈ R

2 − A.

Lemma 0.7 Suppose that N(p1) = N(p2), and that p1 and p2 are joined by

a polygonal path that is transverse to A, and A∩B has N ≥ 2 points. Then

p1 and p2 are also joined by a polygonal path that is transverse to A and

intersects A less than N times.

Proof: Figure 5 shows the idea of the proof. Let B be the original path
joining p1 to p2. We follow along B until we come extremely close to the first
intersection point of A ∩ B. We then follow a detour along a shadow curve
A′ until we reach B again. (We must reach B again because A∩B has more
than one point.) We then let B′ be the path obtained by taking the detour.
By construction, B′ intersects A fewer times than B does. ♠

B

detour B'

Figure 5: The origial path and the new path.

Corollary 0.8 Let p1, p2 ∈ R
2 − A. Suppose that N(p1) = N(p2). Then p1

and p2 lie in the same component of R2 − A.

Proof: Choose some polygonal path which joins p1 to p2 and is transverse to
A and intersects A the minimum possible number of times. If this number,
N , is positive, then N ≥ 2. But then the previous lemma applies, showing
that our path is not minimal. ♠
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The two corollaries together say that R2 − A has two components. One
of them consists of the points p with N(p) = 0 and the other one consists
of points p where N(p) = 1. Figure 6 shows an example, with the N = 1
component filled in.

Figure 6: An embedded loop and one of its components.
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