
Math 1410: Notes on the Reals: The purpose of these notes is to define
the real numbers in terms of the rationals and then to prove some useful
properties about them. The notes will assume all the basic properties of
the rational numbers that you learn in your youth. Also, the notes have
a do-it-yourself flavor. I’ll give the basic constructions and definitions, and
then you’ll have some exercises to check the details. Doing the exercises is a
really good way to learn this stuff well. You don’t need to read these notes
to follow the class, but these notes will enhance your understanding of all
the arguments which explicitly mention Rn.

Cauchy Sequences: An infinite sequence {ai} of rational numbers is called
Cauchy if for every positive integer N there is another positive integer M
such that

|ai − aj| <
1

N
(1)

provided that both i and j are greater than M . You might say that a Cauchy
sequence of rationals settles down.

Given two Cauchy sequences {ai} and {bi} we define their shuffle to be
the sequence

a1, b1, a2, b2, a3, b3, ... (2)

We say that {ai} and {bi} are equivalent if their shuffle is also a Cauchy
sequence. In this case, we write {ai} ∼ {bi}. Intuitively, this means that
both sequences are “settling down in the same place”.

Exercise 1: Prove that this notion of equivalence is an equivalence rela-
tion. In other words,

• Every Cauchy sequence is equivalent to itself.

• If {ai} ∼ {bi} then {bi} ∼ {ai}.

• If {ai} ∼ {bi} and {bi} ∼ {ci} then {ai} ∼ {ci}.

The equivalence class of a Cauchy sequence is the set of all Cauchy se-
quences equivalent to it. The set of all Cauchy sequences is partitioned into
these equivalence classes. A representative of an equivalence class of Cauchy
sequence is any Cauchy sequence belonging to that class.

Real Numbers: A real number is defined to be an equivalence class of
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Cauchy sequences. Each real number is a different equivalence class. The set
of all real numbers is denoted R.

First of all, let’s make sure that we haven’t lost the rationals. For each
rational number a ∈ Q, we let a′ denote the equivalence class of the Cauchy
sequence a, a, a, .... The map a → a′ is an injective map from Q into R. If
we identify Q with the subset {a′| a ∈ Q} then we have a copy of Q sitting
inside R. In particular 0 is the equivalence class containing the Cauchy se-
quence 0, 0, 0, ... and 1 is the equivalence class of the sequence 1, 1, 1, ....

The Field Operations: Suppose that α and β are two real numbers and
∗ is any of the symbols +,−,×, /, we define α ∗ β to be the equivalence
class of the sequence {ai ∗bi} where {ai} is a representative of α and {bi} is a
representative of β. In case we are doing division, we only define this if β 6= 0.

Exercise 2: Prove that the operation α∗β is well defined. In other words, if
we take different representatives for α and β and do the same construction,
we end with the same equivalence class of Cauchy sequences.

Exercise 3: Verify that the operations above turn R into a field . Those of
you who have had an abstract algebra class know what this means, but for
anyone else here are the properties you want to verify:

• α + β = β + α and αβ = βα for all α, β ∈ R.

• (α + β) + γ = α + (β + γ) and α(βγ) = (αβ)γ for all α, β, γ ∈ R.

• α(β + γ) = αβ + αγ for all α, β, γ ∈ R.

• 0 + α = α and 1× α = α for all α ∈ R.

• For all α ∈ R there is a (unique) β ∈ R such that α + β = 0.

• For all α ∈ R− {0} there is a (unique) β ∈ R such that αβ = 1.

This is a fairly imposing list, but once you do a few of them you’ll see that the
verifications are all more or less the same, and follow from similar properties
of the rationals.

Ordering the Reals: Suppose α 6= 0 is a real number. We say that α
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is positive if, for any representative {ai} of α, we have ai > 0 once i is suffi-
ciently large.

Exercise 4: Prove that this notion of positive is well-defined. That is,
it is independent of the chosen representative. This result depends crucially
on the fact that α 6= 0.

Given two arbitrary reals α and β, we write α < β if and only if β − α
is positive.

Exercise 5: Prove that this notion of order makes R into an ordered Archi-

median field . That is, prove that

• If α < β and β < γ then α < γ.

• Given two unequal reals α and β, either α < β or β < α.

• If α < β and γ > 0 then αγ < βγ.

• If α > 0 then there exists some positive integer N so that Nα > 1.

We define α ≤ β if either α = β or α < β. We define the other symbols >
and ≥ in the way you might expect.

The Least Upper Bound Property: A subset S ⊂ R is called bounded

from above if there is some real number α such that σ ≤ α for all σ ∈ S.
The number α is called an upper bound for S.

The number α is called a least upper bound for S if there is no β < α
such that β is also an upper bound for S. Now I’m going to explain why R

has the least upper bound property: Each set S bounded from above has a
least upper bound.

Let 2−nZ denote the set of rational numbers of the form k/2n. This set
is an infinite set of rational numbers which are evenly spaced. Note that
2−nZ ⊂ 2−(n+1)Z. Let An denote the set of upper bounds for S in 2−nZ.
The set An is bounded from below. Therefore, An has a least element an.
The number an is a rational number. By construction an+1 ≤ an for all n.
Hence {ai} is a monotone decreasing sequence which is bounded from below.

Exercise 6: Prove that a monotone decreasing sequence that is bounded
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from below is a Cauchy sequence.

Exercise 7: Let α be the equivalence class of the sequence {ai}. Prove
that α is the least upper bound for S. (Hint: After showing that α is an
upper bound, try to reason like this: If β < α is another upper bound, show
that some an is not the least element of An.

The least upper bound for S is denoted lim supS. So, the real numbers
have the property that every set bounded from above has a least upper
bound. In summary, the real numbers are an Archimedian ordered field with
the least upper bound property. The rest of the structures in R are defined
in terms of the properties above. For instance (a, b) denotes the set of reals
x with a < x < b. This is called an open interval. The open intervals form
a basis for the usual topology on R. Likewise [a, b] is defined as the set of
x ∈ R such that a ≤ x ≤ b. The set [a, b] is called a closed interval .

At this point, you don’t have to always keep in your mind that a real
number is secretly an equivalence class of Cauchy sequences. You just have
to remember that R is an Archimedian ordered field with the least upper
bound property. There are several other constructions of R – e.g. one which
uses something called Dedekind cuts – but all these constructions lead to a
structure isomorphic to ours.

Nested Intervals and Cubes: Now we’re going to prove a result that
we’ll use frequently in class. Let {In} be an infinite sequence of closed inter-
vals in R. We call this sequence nested if I1 ⊃ I2 ⊂ I3, .... That is In+1 ⊂ In
for all n.

Theorem 0.1 Every nested sequence of intervals has at least one point in

its intersection.

Proof: The set S of left endpoints of these intervals is bounded from above.
Let α be the least upper bound for this set. Each right endpoint is an upper
bound for S. Therefore α is or equal to all the right endpoints. At the same
time α is greater or equal to all the left endpoints. Therefore α belongs to
every interval. ♠

Remark: Here is another way to think about the proof just given. The
sequence of left endpoints is monotone increasing and bounded from above.
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Therefore, it is a Cauchy sequence. The real number α constructed in the
proof above is represented by this Cauchy sequence.

Exercise 8: Formulate and prove the same kind of result for nested se-
quences of cubes (or rectangular solids) in Rn.
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